PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 05 |

Tytuł artykułu

MiR393-targeted TIR1-like (F-box) gene in response to inoculation to R. Solani in Zea mays

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate special target mRNAs at the post-transcriptional level by directing target mRNA cleavage or translational inhibition. Plant miRNAs regulate gene expression mainly by guiding cleavage of target mRNAs and subsequently play important roles in diverse developmental processes, nutrient homeostasis and responses to biotic and abiotic stresses. MiRNA393 plays important and diverse roles in defense against bacterial pathogens by negatively targeting transport inhibitor response 1 (TIR1) in plant development. It will be essential for understanding complex feedback regulations in the development pathway by unraveling the miR393 network in a temporal and spatial manner. Here, we report that Zma-miR393b down-regulates its putative target TIR1-like (F-box) gene by guiding the cleavage of their mRNAs in development of leaf sheaths in response to R. Solani infection, Zma-miR393b and its putative target gene TIR1 were confirmed through Q-PCR and the spatial expression of Zma-miR393b was further analyzed by in situ hybridization. These findings suggested that, as a negative feedback regulation of TIR1-like (F-box) gene, Zma-miR393b plays an important role in defense against R. Solani infection.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

05

Opis fizyczny

p.1283-1291,fig.,ref.

Twórcy

autor
  • Research Center for Drug Discovery of Luzhou Medical College, Luzhou, Sichuan, China
autor
  • Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research, Institute of Sichuan, Agricultural University, 211 Huimin Road, Wenjiang, Sichuan, China
autor
  • Sichuan Tourism University, Chengdu 610000, Sichuan, People's Republic of China
autor
  • Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research, Institute of Sichuan, Agricultural University, 211 Huimin Road, Wenjiang, Sichuan, China
autor
  • Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research, Institute of Sichuan, Agricultural University, 211 Huimin Road, Wenjiang, Sichuan, China

Bibliografia

  • Alves-Junior L, Niemeier S, Hauenschild A, Rehmsmeier M, Merkle T (2009) Comprehensive prediction of novel microRNA targets in Arabidopsis thaliana. Nucleic Acids Res 37(12):4010–4021
  • Chung W, Huang J, Huang H (2005) Formulation of a soil biofungicide for control of damping-off of Chinese cabbage (Brassica chinensis) caused by Rhizoctonia solani. Biol Control 32(2):287–294
  • Cordoba E, Salmi M, León P (2009) Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot 60(10):2933–2943
  • Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9(1):109–119
  • Fattash I, Voß B, Reski R, Hess WR, Frank W (2007) Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution. BMC Plant Biol 7(1):13
  • Garcia D (2008) A miRacle in plant development: role of microRNAs in cell differentiation and patterning. In: Seminars in cell and developmental biology, vol 6. Elsevier, pp 586–595
  • Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin–ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13(13):1678–1691
  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(suppl 1):D154–D158
  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799
  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649
  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435(7041):446–451
  • Kruszka K, Pieczynski M, Windels D, Bielewicz D, Jarmolowski A, Szweykowska-Kulinska Z, Vazquez F (2012) Role of microRNAs and other sRNAs of plants in their changing environments. J Plant Physiol 169(16):1664–1672
  • Liu H-H, Tian X, Li Y-J, Wu C-A, Zheng C-C (2008) Microarraybased analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14(5):836–843
  • Liu Z, Kumari S, Zhang L, Zheng Y, Ware D (2012) Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays. PLoS One 7(6):e39786
  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14(3):267–274
  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436–439
  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53(4):674–690
  • Parry G, Calderon-Villalobos L, Prigge M, Peret B, Dharmasiri S, Itoh H, Lechner E, Gray W, Bennett M, Estelle M (2009) Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci 106(52):22540–22545
  • Pena JT, Sohn-Lee C, Rouhanifard SH, Ludwig J, Hafner M, Mihailovic A, Lim C, Holoch D, Berninger P, Zavolan M (2009) miRNA in situ hybridization in formaldehyde and EDC-fixed tissues. Nat Methods 6(2):139–141
  • Qiu F, Zheng Y, Zhang Z, Xu S (2007) Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann Bot 99(6):1067–1081
  • Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H (2006) Quantitative real-time RT-PCR data analysis: current concepts and the novel ‘‘gene expression’s C T difference’’ formula. J Mol Med 84(11):901–910
  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8(4):517–527
  • Shukla LI, Chinnusamy V, Sunkar R (2008) The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochimica et Biophysica Acta (BBA)-Gene Regul Mech 1779(11):743–748
  • Sunkar R, Chinnusamy V, Zhu J, Zhu J-K (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12(7):301–309
  • Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446(7136):640–645
  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci 107(9):4477–4482
  • Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10(6):385–397
  • Wibrand K, Panja D, Tiron A, Ofte ML, Skaftnesmo KO, Lee CS, Pena JT, Tuschl T, Bramham CR (2010) Differential regulation of mature and precursor microRNA expression by NMDA and metabotropic glutamate receptor activation during LTP in the adult dentate gyrus in vivo. Eur J Neurosci 31(4):636–645
  • Zhang L, Chia J-M, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5(11):e1000716
  • Zhang W, Gao S, Zhou X, Chellappan P, Chen Z, Zhou X, Zhang X, Fromuth N, Coutino G, Coffey M (2011) Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol 75(1–2):93–105

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fb9efc7c-c70a-447f-baa6-68f61665705a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.