PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 11 |

Tytuł artykułu

Primary stress response induced by different elements is mediated through auxin signalling in barley root tip

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Short-term exposure (15 min) of barley roots to different chemical elements revealed that Cd, Cu, Hg and Pb were the most toxic ones causing a marked root growth inhibition even at µM concentrations. Gd, La, Al, Cr, As, Zn, Ni and Se inhibited root growth to a similar extent only at mM concentrations. Despite the high 20 mM concentration, Co caused only a slight, while Mn, Mg or Ca did not evoke any root growth inhibition. Elements at concentrations inhibiting root growth caused a considerable accumulation of indole-3-acetic acid in the root apex. While Cr, As and Zn inhibited, Cd, Cu, Hg, Pb, Gd, La and Al markedly stimulated the generation of reactive oxygen species in the beginning of differentiation zone. Auxin signalling inhibitor alleviated or prevented root growth inhibition, reactive oxygen species generation and the stimulation of lipoxygenase and glutathione peroxidase activity by various elements, indicating a key role of auxin signalling in the stress response of barley root tip. On the other hand, it did not affect or even had an additive effect on dehydroascorbate reductase and ascorbic acid oxidase activity in combination with different elements. Our results indicate that the primary response of barley roots to the presence of various chemical elements during the shortterm treatment is not a specific but rather a general adaptive stress response enabling the plant to survive adverse conditions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

11

Opis fizyczny

p.2935-2946,fig.,ref.

Twórcy

autor
  • Institute of Botany, Slovak Academy of Sciences, Dubravska cesta 9, 84523, Bratislava, Slovak Republic
autor
  • Institute of Botany, Slovak Academy of Sciences, Dubravska cesta 9, 84523, Bratislava, Slovak Republic
autor
  • Institute of Botany, Slovak Academy of Sciences, Dubravska cesta 9, 84523, Bratislava, Slovak Republic
autor
  • Institute of Botany, Slovak Academy of Sciences, Dubravska cesta 9, 84523, Bratislava, Slovak Republic
autor
  • Institute of Botany, Slovak Academy of Sciences, Dubravska cesta 9, 84523, Bratislava, Slovak Republic
autor
  • Institute of Botany, Slovak Academy of Sciences, Dubravska cesta 9, 84523, Bratislava, Slovak Republic

Bibliografia

  • Alemayehu A, Bočová B, Zelinová V, Mistrík I, Tamás L (2013) Enhanced lipoxygenase activity is involved in barley root tip swelling induced by cadmium, auxin or hydrogen peroxide. Environ Exp Bot 93:55–62
  • Anthon GE, Barrett DM (2001) Colorimetric method for the determination of lipoxygenase activity. J Agric Food Chem 49:32–37
  • Arrigoni O, Dipierro S, Borraccino G (1981) Ascorbate free radical reductase, a key enzyme of the ascorbic acid system. FEBS Lett 125:242–244
  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34
  • Bočová B, Huttová J, Mistrík I, Tamás L (2013) Auxin signalling is involved in cadmium-induced glutathione-S-transferase activity in barley root. Acta Physiol Plant 35:2685–2690
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719
  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940
  • Drotar A, Phelps P, Fall R (1985) Evidence for glutathione peroxidase activities in cultured plant cells. Plant Sci 42:35–40
  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494
  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266
  • Hu YF, Zhou G, Na XF, Yang L, Nan WB, Liu X, Zhang YQ, Li JL, Bi YR (2013) Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. J Plant Physiol 170:965–975
  • Ivanchenko MG, den Os D, Monshausen GB, Dubrovsky JG, Bednářová A, Krishnan N (2013) Auxin increases the hydrogen peroxide (H₂O₂) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth. Ann Bot 112:1107–1116
  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060
  • Kopittke PM, Blamey FPC, Menzies NW (2008) Toxicities of soluble Al, Cu, and La include ruptures to rhizodermal and root cortical cells of cowpea. Plant Soil 303:217–227
  • Kopittke PM, McKenna BA, Blamey FPC, Wehr JB, Menzies NW (2009) Metal-induced cell rupture in elongating roots is associated with metal ion binding strengths. Plant Soil 322:303–315
  • Kopittke PM, Blamey FPC, Asher CJ, Menzies NW (2010) Trace metal phytotoxicity in solution culture: a review. J Exp Bot 61:945–954
  • Lane TW, Morel FMM (2000) A biological function for cadmium in marine diatoms. Proc Natl Acad Sci 97:4627–4631
  • Lau O-L, Yang SF (1976) Inhibition of ethylene production by cobaltous ion. Plant Physiol 58:114–117
  • Liptáková Ĺ, Bočová B, Huttová J, Mistrík I, Tamás L (2012) Superoxide production induced by short-term exposure of barley roots to cadmium, auxin, alloxan and sodium dodecyl sulfate. Plant Cell Rep 31:2189–2197
  • Maathuis FJM (2009) Physiological function of mineral macronutrients. Curr Opin Plant Biol 12:250–258
  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187
  • Murphy A, Taiz L (1995) A new vertical mesh transfer technique for metal-tolerance studies in Arabidopsis. Plant Physiol 108:29–38
  • Naumann B, Eberius M, Appenroth K-J (2007) Growth rate based dose-response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. J Plant Physiol 164:1656–1664
  • Ortega-Villasante C, Hernández LE, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO (2007) Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings. New Phytol 176:96–107
  • Pan J, Plant JA, Voulvoulis N, Oates CJ, Ihlenfeld C (2010) Cadmium levels in Europe: implications for human health. Environ Geochem Health 32:1–12
  • Pető A, Lehotai N, Lozano-Juste J, León J, Tari I, Erdei L, Kolbert Z (2011) Involvement of nitric oxide and auxin in signal transduction of copper-induced morphological responses in Arabidopsis seedlings. Ann Bot 108:449–457
  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274
  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105
  • Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor EB, Baskin TI (2007) Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J 50:514–528
  • Sävenstrand H, Strid Å (2004) Six genes strongly regulated by mercury in Pisum sativum roots. Plant Physiol Biochem 42:135–142
  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365
  • Sharma SS, Dietz K-J (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50
  • Shen H, Hou NY, Schlicht M, Wan YL, Mancuso S, Baluska F (2008) Aluminium toxicity targets PIN2 in Arabidopsis root apices: effects on PIN2 endocytosis, vesicular recycling, and polar auxin transport. Chin Sci Bull 53:2480–2487
  • Snowden KC, Richards KD, Gardner RC (1995) Aluminum-induced genes. Induction by toxic metals, low calcium, and wounding and pattern of expression in root tips. Plant Physiol 107:341–348
  • Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64:1–16
  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185
  • Sun Y, Li Z, Guo B, Chu G, Wei C, Liang Y (2008) Arsenic mitigates cadmium toxicity in rice seedlings. Environ Exp Bot 64:264–270
  • Sun P, Tian Q-Y, Chen J, Zhang W-H (2010) Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. J Exp Bot 61:347–356
  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzaka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999
  • Tamás L, Bočová B, Huttová J, Liptáková Ĺ, Mistrík I, Valentovičová K, Zelinová V (2012) Impact of the auxin signaling inhibitor p-chlorophenoxyisobutyric acid on short-term Cd-induced hydrogen peroxide production and growth response in barley root tip. J Plant Physiol 169:1375–1381
  • Tewari RK, Kumar P, Sharma PN, Bisht SS (2002) Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Sci 162:381–388
  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616
  • Van Hoewyk D, Takahashi H, Inoue E, Hess A, Tamaoki M, Pilon-Smiths EAH (2008) Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253
  • Yuan H-M, Xu H–H, Liu W-C, Lu Y-T (2013) Copper regulates primary root elongation through PIN1-mediated auxin redistribution. Plant Cell Physiol 54:766–778
  • Zelinová V, Halušková Ĺ, Mistrík I, Tamás L (2011) Abiotic stress–induced inhibition of root growth and ascorbic acid oxidase activity in barley root tip is associated with enhanced generation of hydrogen peroxide. Plant Soil 349:281–289
  • Zelinová V, Mistrík I, Pavlovkin J, Tamás L (2013a) Glutathione peroxidase expression and activity in barley root tip after shortterm treatment with cadmium, hydrogen peroxide and t-butyl hydroperoxide. Protoplasma 250:1057–1065
  • Zelinová V, Bočová B, Huttová J, Mistrík I, Tamás L (2013b) Impact of cadmium and hydrogen peroxide on ascorbate-glutathione recycling enzymes in barley root. Plant Soil Environ 59:62–67
  • Zhao FY, Hu F, Zhang SY, Wang K, Zhang CR, Liu T (2013) MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice. Environ Sci Pollut Res 20:5449–5460

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3922d471-beb2-4c1a-844b-13b37b4385a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.