PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 11 |

Tytuł artykułu

24-Epibrassinolide regulates carbohydrate metabolism and increases polyamine content in cucumber exposed to Ca(NO3 )2 stress

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effects of 24-epibrassinolide (EBL) on carbohydrate metabolism and endogenous content of polyamines were investigated in cucumber seedlings (Cucumis sativus L. cv. Jinyou No. 4) exposed to salinity stress [80 mM Ca(NO₃)₂]. Spraying of exogenous EBL partially enhanced the enzyme activities of sucrose phosphate synthase, sucrose synthase and acid invertase; thus, raising the level of sucrose, fructose and total soluble sugars. The amylase activity was also increased by EBL, companied by the rising of sucrose level. These results indicated that EBL improved the carbohydrate metabolism of cucumber under Ca(NO₃)₂ stress. Moreover, EBL raised the levels of soluble conjugated and insoluble bound polyamines while lowered the free polyamines content, particularly putrescine. Our experiment demonstrated that exogenous EBL elevated stability of cellular membrane and positively improve the carbohydrate metabolism in cucumber growing under Ca(NO₃)₂ stress.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

11

Opis fizyczny

p.2845-2852,fig.,ref.

Twórcy

autor
  • Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
  • College of Horticulture, Anhui Agricultural University, Hefei, 230061, China
autor
  • College of Horticulture, Anhui Agricultural University, Hefei, 230061, China
autor
  • Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
autor
  • Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
autor
  • Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
autor
  • Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China

Bibliografia

  • Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signaling. Nature 448:938–942
  • Buysse J, Merckx R (1993) An important colorimetric method to quantify sugar content of plant tissue. J Exp Bot 44:1627–1629
  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 1011:9909–9914
  • Darwish T, Atallah T, E1 Moujabber M, Khatib N (2005) Salinity evolution and crop response to secondary soil salinity in two agro-climatic zones in Lebanon. Agric Water Manage 78:152–164
  • Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K (2007) Salt stress impact on the molecular structure and function of the photosynthetic apparatus-the protective role of polyamines. Biochim Biophys Acta 1767:272–280
  • Doehlert DC, Duke SH, Anderson L (1982) Beta-amylases from alfalfa (Medicago sativa L.) roots. Plant Physiol 69:1096–1102
  • Fan HF, Du CX, Guo SR (2010) Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content. Environ Exp Bot. doi:10.1016/j.envexpbot.2010.09.007
  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO₂ assimilation in leaves of C₃ species. Planta 149:78–90
  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Sign 11:861–915
  • Guo J, Jermyn WA, Turnbull MH (2002) Carbon partitioning and sucrose metabolism in two field-grown asparagus (Asparagus officinalis) cultivars with contrasting yield. Funct Plant Biol 29:517–526
  • Hamdani S, Yaakoubi H, Carpentier R (2011) Polyamines interaction with thylakoid proteins during stress. J Photochem Photobiol, B 104:314–319
  • Hubbard NL, Huber SC, Pharr DM (1989) Sucrose phosphate synthase and acid invertase as determinants of sucrose accumulation in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol 91:1527–1534
  • Huber SC, Huber JL (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:431–444
  • James RA, Rivelli AR, Munns R, von Caemmerer S (2002) Factors affecting CO₂ assimilation, leaf injury and growth in saltstressed durum wheat. Funct Plant Biol 29(12):1393–1403
  • Janeczko A, Gullner G, Skoczowski A, Dubert F, Barna B (2007) Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biol Plantarum 51:355–358
  • Ju M, Shi WM, Xing GX, Zhu ZL (2011) Nitrogen balance and loss in a greenhouse vegetable system in southeastern China. Pedosphere 21:464–472
  • Kitamura Y, Yano T, Honna T, Yamamoto S, Inosako K (2006) Causes of farmland salinization and remedial measures in the Aral Sea basin-research on water management to prevent secondary salinization in rice-based cropping system in arid land. Agric Water Manage 85:1–14
  • Kuznetsov VV, Radyukina NL, Shevyakova NI (2006) Polyamines and stress: biological role, metabolism, and regulation. Russ J Plant Physiol 53:583–604
  • Li DP, Wu ZJ, Liang CH, Chen LJ (2004) Characteristics and regulation of greenhouse soil environment. Chin J Ecol 23:192–197
  • Lowell CA, Tomlinson PT, Koch KE (1989) Sucrose-metabolising enzymes in transport tissue and adjacent sink structures in developing citrus fruit. Plant Physiol 90:1394–1402
  • Manter DK, Kerrigan J (2004) A/Ci curve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance. J Exp Bot 55:2581–2588
  • McMurtrie RE, Wang YP (1993) Mathematical models of the photosynthetic responses of tree stands to rising CO₂ concentrations and temperatures. Plant Cell Environ 6:1–13
  • Miron D, Schaffer AA (1991) Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of Lycopersicon esculentum Mill. and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl. Plant Physiol 95:623–627
  • Miyagi M, Oku H, Chinen I (1990) Purification and action pattern on soluble starch of α-amylase from sugarcane leaves. Agric Biol Chem 54:849–855
  • Morgan JM (1992) Osmotic component and properties associated with genotypic differences in osmoregulation in wheat. Funct Plant Biol 10:67–76
  • Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400
  • Rahman T, Krishna UDP (2010) Genes involved in brassinosteroid-mediated abiotic stress tolerance. J Biotechnol. doi:10.1016/j.jbiotec.2010.08.289
  • Sharma P, Rajam MV (1995) Spatial and temporal changes in endogenous polyamine levels associated with osmotic embryogenesis from different hypocotyls segments of eggplant (Solanum melongena L.). J Plant Physiol 146:658–664
  • Shevyakova NI, Rakitin VYU, Stetsenko LA, Aronova EE, Kutnetsov VV (2006) Oxidative stress and fluctuations of free and conjugated polyamines in the halophyte Mesembryanthemum crystallinum L. under NaCl salinity. Plant Growth Regul 50:69–78
  • Shu S, Guo SR, Sun J, Yuan LY (2012) Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiol Plant 146:285–296
  • Skoczowski A, Janeczko A, Gullner G, Tóbias I, Kornaś A, Barna B (2011) Response of brassinosteroid-treated oilseed rape cotyledons to infection with the wild type and HR-mutant of Pseudomonas syringe or with P. florescence. J Therm Anal Calorim 104:131–139
  • Stitt M (1986) Limitation of photosynthesis by carbon metabolism. I. Evidence for excess electron-transport capacity in leaves carrying out photosynthesis in saturating light and CO₂. Plant Physiol 81(4):1115–1122
  • von Caemmerer S, Farquhar GD (1981) Some relations between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387
  • Wu CY, Terieu A, Radhakrishnan P, Kwork SF, Harris S, Zhang K, Wang JL, Wan JM, Zhai HQ, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 20:2130–2145
  • Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogué S (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55:1135–1143
  • Yuan LY, Shu S, Sun J, Guo SR, Takafumi T (2012) Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO₃)₂ stress. Photosynth Res 112:205–214

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b76c19b1-22a8-4059-ac53-4945b87bd748
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.