PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 85 | 4 |

Tytuł artykułu

Diversity of phyllotaxis in land plants in reference to the shoot apical meristem structure

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Regularity and periodicity in the arrangements of organs in all groups of land plants raise questions about the mechanisms underlying phyllotactic pattern formation. The initiation of the lateral organs (leaves, flowers, etc.), and thus, their spatio-temporal positioning, occurs in the shoot apical meristem (SAM) and is related to the structure and organogenic activity of the meristem. In this review, we present some aspects of the diversity and stability of phyllotactic patterns in the major lineages of land plants, from bryophytes to angiosperms, in which SAM structures differ significantly. In addition, we discuss some of the possible mechanisms involved in the formation of the recurring arrangement of the lateral organs.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

85

Numer

4

Opis fizyczny

Article 3529 [21p.], fig.,ref.

Twórcy

autor
  • Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
autor
  • Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland

Bibliografia

  • 1. Kuhlemeier C. Phyllotaxis. Trends Plant Sci. 2007;12:143–150. https://doi.org/10.1016/j.tplants.2007.03.004
  • 2. Sassi M, Vernoux T. Auxin and self-organization at the shoot apical meristem. J Exp Bot. 2013;64(9):2579–2592. https://doi.org/10.1093/jxb/ert101
  • 3. Evert RF, Eichhorn SE, editors. Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. 3rd ed. New York, NY: John Wiley & Sons; 2007. https://doi.org/10.1002/0470047380
  • 4. Jean RV. Phyllotaxis. A systemic study in plants morphogenesis. Cambridge: Cambridge University Press; 1994. https://doi.org/10.1017/cbo9780511666933
  • 5. Zagórska-Marek B, Szpak M. Virtual phyllotaxis and real plant model cases. Funct Plant Biol. 2008;35(10):1025–1033. https://doi.org/10.1071/FP08076
  • 6. Wiss D, Zagórska-Marek B. Geometric parameters of the apical meristem and the quality of phyllotactic patterns in Magnolia flowers. Acta Soc Bot Pol. 2012;81:203–216. https://doi.org/10.5586/asbp.2012.029
  • 7. Church AH. On the relation of phyllotaxis to mechanical laws. London: Williams and Norgate; 1904.
  • 8. Zagórska-Marek B. Phyllotactic patterns and transitions in Abies balsamea. Can J Bot. 1985;63(10):1844–1854. https://doi.org/10.1139/b85-259
  • 9. Adler I. A model of contact pressure in phyllotaxis. J Theor Biol. 1974;45:1–79. https://doi.org/10.1016/0022-5193(74)90043-5
  • 10. Shaw J, Renzaglia K. Phylogeny and diversification of bryophytes. Am J Bot. 2004;91(10):1557–1581. https://doi.org/10.3732/ajb.91.10.1557
  • 11. Harrison CJ, Roder AH, Meyerowitz EM, Langdale JA. Local cues and asymmetric divisions underpin body plan transitions in the moss Physcomitrella patens. Curr Biol. 2009;19:461–471. https://doi.org/10.1016/j.cub.2009.02.050
  • 12. Crandall-Stotler BJ. Musci, hepatics and anthocerotes-an essay on analogues. In: Schuster RM, editor. New manual of bryology. Nichinan: Hattori Botanical Laboratory; 1984. p. 1093–1129.
  • 13. Crum H. Structural diversity of bryophytes. Ann Arbor, MI: The University of Michigan Herbarium; 2001.
  • 14. Goffinet B, Buck WR, Shaw AJ. Morphology, anatomy, and classification of the Bryophyta. In: Goffinet B, Shaw AJ, editors. Bryophyte biology. 2nd ed. Cambridge: Cambridge University Press; 2009. p. 55–138. https://doi.org/10.1017/cbo9780511754807.003
  • 15. Crandall-Stotler B, Stotler R, Long DG. Morphology and classification of the Marchantiophyta. In: Goffinet B, Shaw AJ, editors. Bryophyte biology. 2nd ed. Cambridge UK: Cambridge University Press; 2009. p. 1–54. https://doi.org/10.1017/cbo9780511754807.002
  • 16. Kenrick K, Crane PR. The origin and early diversification of land plants: a cladistic study. Washington, DC: Smithsonian Institution Press; 1997.
  • 17. Philipson WR. The significance of apical meristems in the phylogeny of land plants. Plant Syst Evol. 1990;173(1):17–38. https://doi.org/10.1007/BF00937760
  • 18. Harrison CJ, Rezvani M, Langdale JA. Growth from two transient apical initials in the meristem of Selaginella kraussiana. Development. 2007;134:881–889. https://doi.org/10.1242/dev.001008
  • 19. Imaichi R. Meristem organization and organ diversity. In: Ranker TA, Haufler CH, editors. Biology and evolution of ferns and lycophytes. Cambridge: Cambridge University Press; 2008. p. 75–106. https://doi.org/10.1017/cbo9780511541827.004
  • 20. Jones CS, Drinnan AN. The developmental pattern of shoot apices in Selaginella kraussiana (Kunze) A. Brown. Int J Plant Sci. 2009;170(8):1009–1018. https://doi.org/10.1086/605118
  • 21. Härtel K. Studien an Vegetationspunkten einheimischer Lycopodien. Beiträge zur Biologie der Pflanzen. 1937;25(2):124–169.
  • 22. Stevenson DW. Observations on phyllotaxis, stelar morphology, the shoot apex and gemmae of Lycopodium lucidulum Michaux (Lycopodiaceae). Bot J Linn Soc. 1976;72:81–100. https://doi.org/10.1111/j.1095-8339.1976.tb01353.x
  • 23. Gola EM, Jernstedt JA. Impermanency of initial cells in Huperzia lucidula (Huperziaceae) shoot apices. Int J Plant Sci. 2011;172:847–855. https://doi.org/10.1086/660878
  • 24. Tomescu AMF. The sporophytes of seed-free vascular plants – major vegetative developmental features and molecular genetic pathways. In: Fernández H, Kumar A, Revilla MA, editors. Working with ferns: issues and applications. New York, NY: Springer; 2011. p. 67–94. https://doi.org/10.1007/978-1-4419-7162-3_6
  • 25. Paolillo DJ. The developmental anatomy of Isoëtes. Urbana, IL: University of Illinois Press; 1963. (Illinois Biological Monographs; vol 31). https://doi.org/10.5962/bhl.title.50237
  • 26. Vasco A, Moran RC, Ambrose BA. The evolution, morphology, and development of fern leaves. Front Plant Sci. 2013;4:345. https://doi.org/10.3389/fpls.2013.00345
  • 27. Dengler NG. The developmental basis of anisophylly in Selaginella martensii. I. Initiation and morphology of growth. Am J Bot. 1983;70(2):181–192. https://doi.org/10.2307/2443262
  • 28. Jernstedt JA, Cutter EG, Lu P. Independence of organogenesis and cell pattern in developing angle shoots of Selaginella martensii. Ann Bot. 1994;74(4):343–355. https://doi.org/10.1006/anbo.1994.1127
  • 29. Schoute JC. Morphology. In: Verdoorn F, editor. Manual of pteridology. Hague: Martinus Nijhoff; 1938. p. 1–64.
  • 30. Jermy AC. Selaginellaceae. In: Kramer KU, Green PS, editors. The families and genera of vascular plants. Pteridophytes and gymnosperms. Berlin: Springer; 1990. p. 31–39. https://doi.org/10.1007/978-3-662-02604-5_11
  • 31. Gola E. Phyllotaxis diversity in Lycopodium clavatum L. and Lycopodium annotinum L. Acta Soc Bot Pol. 1996;65(3–4):235–247. https://doi.org/10.5586/asbp.1996.036
  • 32. Yin X. The ontogeny and phyllotactic transitions of Diphasiastrum digitatum [Master thesis]. Oxford, OH: Miami University; 2012.
  • 33. Vindt-Balguerié E. Étude au microscope électronique à balayage de la bulbille de Huperzia selago (L.) Bernh. (Lycopodium): méristème apical, initiation foliaire et phyllotaxie. Can J Bot. 1982(5);60:667–673. https://doi.org/10.1139/b82-088
  • 34. Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, et al. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature. 2001;409:618–622. https://doi.org/10.1038/35054555
  • 35. Bierhorst DW. On the stem apex, leaf initiation and early leaf ontogeny in filicalean ferns. Am J Bot. 1977;64(2):125–152. https://doi.org/10.2307/2442101
  • 36. White RA, Turner MD. Anatomy and development of the fern sporophyte. Bot Rev. 1995;61(4):281–305. https://doi.org/10.1007/bf02912620
  • 37. Hébant-Mauri R. Cauline meristems in leptosporangiate ferns: structure, lateral appendages, and branching. Can J Bot. 1993;71(12):1612–1624. https://doi.org/10.1139/b93-196
  • 38. Lemon GD, Posluszny U. Shoot morphology and organogenesis of the aquatic floating fern Salvinia molesta D.S. Mitchell, examined with the aim of the laser scanning confocal microscopy. Int J Plant Sci. 1997;158(6):693–703. https://doi.org/10.1086/297481
  • 39. Hébant-Mauri R. Segmentation apicale et initiation foliaire chez Ceratopteris thalictroides (fougère leptosporangiée). Can J Bot. 1977;55(13):1820–1828. https://doi.org/10.1139/b77-208
  • 40. Hébant-Mauri R. Apical segmentation and leaf initiation in the tree fern Dicksonia squarrosa. Can J Bot. 1975;53(8):764–772. https://doi.org/10.1139/b75-092
  • 41. Golub SJ, Wetmore RH. Studies of development in the vegetative shoots of Equisetum arvense L. I. The shoot apex. Am J Bot. 1948;35(10):755–767. https://doi.org/10.2307/2438157
  • 42. Bierhorst DW. Symmetry in Equisetum. Am J Bot. 1959;46(3):170–179. https://doi.org/10.2307/2439274
  • 43. Rutishauser R. Polymerous leaf whorls in vascular plants: developmental morphology and fuzziness of organ identities. Int J Plant Sci. 1999;160(6 suppl):S81–S103. https://doi.org/10.1086/314221
  • 44. Hirsch AM, Kaplan DR. Organography, branching and the problem of leaf versus bud differentiation in the vining epiphytic fern genus Microgramma. Am J Bot. 1974;61(3): 217–229. https://doi.org/10.2307/2441600
  • 45. Hébant-Mauri R, Veillon JM. Branching and leaf initiation in the erect aerial system of Stromatopteris moniliformis (Gleicheniaceae). Can J Bot. 1989;67:407–414. https://doi.org/10.1139/b89-056
  • 46. Croxdale JG. Origin and early morphogenesis of lateral buds in the fern Davallia. Am J Bot. 1976;63(2):226–238. https://doi.org/10.2307/2441704
  • 47. Hébant-Mauri R, Gay H. Morphogenesis and its relation to architecture in the dimorphic clonal fern Lomagramma guianensis (Aublet) Ching (Dryopteridaceae). Bot J Linn Soc. 1993;112(3):257–276. https://doi.org/10.1006/bojl.1993.1052
  • 48. Cutter EG. Phyllotaxis and apical growth. New Phytol. 1964;63(1):39–46. https://doi.org/10.1111/j.1469-8137.1964.tb07358.x
  • 49. Cutter EG, Voeller BR. Changes in leaf arrangement in individual fern apices. Bot J Linn Soc. 1959;56(366):225–236. https://doi.org/10.1111/j.1095-8339.1959.tb02497.x
  • 50. Christenhusz MJM, Reveal JL, Farjon A, Gardner MF, Mill RR, Chase MW. A new classification and linear sequence of extant gymnosperms. Phytotaxa. 2011;19:55–70. https://doi.org/10.11646/phytotaxa.19.1.3
  • 51. Zagórska-Marek B, Turzańska M. Clonal analysis provides evidence for transient initial cells in shoot apical meristems of seed plants. J Plant Growth Regul. 2000;19(1):55–64. https://doi.org/10.1007/s003440000007
  • 52. Ruth J, Klekowski EJ, Stein J, Stein OL. Impermanent initials of the shoot apex and diplontic selection in a juniper chimer. Am J Bot. 1985;72(7):1127–1135. https://doi.org/10.2307/2443459
  • 53. Gadek PA, Alpers DL, Heslewood MH, Quinn CJ. Relationship within Cupressaceae sensu lato: a combined morphological and molecular approach. Am J Bot. 2000;87(7): 1044–1057. https://doi.org/10.2307/2657004
  • 54. Jagel A, Dörken VM. Morphology and morphogenesis of the seed cones of the Cupressaceae – Part III Callitroideae. Bulletin of the Cupressus Conservation Project. 2015;4(3):91–108.
  • 55. Meicenheimer RD, Zagórska-Marek B. Consideration of the geometry of the phyllotaxic triangular unit and discontinuous phyllotactic transitions. J Theor Biol. 1989;139(3):359–368. https://doi.org/10.1016/S0022-5193(89)80214-0
  • 56. Mundry M, Stützel T. Morphogenesis of the reproductive shoots of Welwitschia mirabilis and Ephedra distachya (Gnetales), and its evolutionary implications. Org Divers Evol. 2004;4(1–2):91–108. https://doi.org/10.1016/j.ode.2004.01.002
  • 57. Yang Y, Lin L, Wang Q. Chengia laxispicata gen. et sp. nov., a new ephedroid plant from the Early Cretaceous Yixian Formation of western Liaoning, Northeast China: evolutionary, taxonomic, and biogeographic implications. BMC Evol Biol. 2013;13:72. https://doi.org/10.1186/1471-2148-13-72
  • 58. Gifford EM, Foster AS. Comparative morphology of vascular plants. New York, NY: WH Freeman; 1989.
  • 59. Martens P, Waterkeyn L. The shoot apical meristem of Welwitschia mirabilis Hooker. Phytomorphology. 1963;13(4):359–363.
  • 60. Davis TA, Bose TK. Fibonacci system in aroids. Fibonacci Quaterly. 1971;9:253–263.
  • 61. Reinhardt D, Kuhlemeier C. Phyllotaxis in higher plants. In: McManus M, Veit B, editors. Meristematic tissues in plant growth and development. Sheffield: Sheffield Academic Press; 2001. p. 172–212.
  • 62. Vakarelov II. Changes in the phyllotactic pattern structure in Pinus L. due to changes in altitude. In: Jean RJ, Barabé D, editors. Symmetry in plants. Singapore: World Scientific Publishing Co. Pte. Ltd; 1998. p. 213–230. https://doi.org/10.1142/9789814261074_0009
  • 63. Banasiak AS, Zagórska-Marek B. Signals flowing from mature tissues to shoot apical meristem affect phyllotaxis in coniferous shoot. Acta Soc Bot Pol. 2006;75(2):113–121. https://doi.org/10.5586/asbp.2006.014
  • 64. Fierz V. Aberrant phyllotactic patterns in cones of some conifers: a quantitative study. Acta Soc Bot Pol. 2015;84(2):261–265. https://doi.org/10.5586/asbp.2015.025
  • 65. Camefort H. Etude de la structure du point végétatif et des variations phyllotaxiques chez quelques gymnospermes. Annales des Sciences Naturelles. Botanique. 1956;11(17):1–185.
  • 66. Tomlinson PB, Zacharias EH. Phyllotaxis, phenology and architecture in Cephalotaxus, Torreya and Amentotaxus (Coniferales). Bot J Linn Soc. 2001;135(3):215–228. https://doi.org/10.1111/j.1095-8339.2001.tb01092.x
  • 67. Tomlinson PB, Murch SJ. Wollemia nobilis (Araucariaceae): branching, vasculature and histology in juvenile stages. Am J Bot. 2009;96(10):1787–1797. https://doi.org/10.3732/ajb.0800385
  • 68. Yin X, Lacroix C, Barabé D. Phyllotactic transitions in seedlings: the case of Thuja occidentalis. Botany. 2011;89(6):387–396. https://doi.org/10.1139/b11-027
  • 69. Zagórska-Marek B. Phyllotaxis triangular unit: phyllotactic transitions as the consequence of apical wedge disclinations in a crystal-like pattern of the units. Acta Soc Bot Pol. 1987;56(2):229–255. https://doi.org/10.5586/asbp.1987.024
  • 70. Zagórska-Marek B, Turzańska M. Quest for center – SAM’s cellular structure and organogenic activity in Actinidia arguta (Siebold. & Zucc.) Planch. ex Miq. Vancouver, BC: The BSA Annual Meeting: Botany Without Borders; 2008.
  • 71. Lyndon RF. The shoot apical meristem. Cambridge: Cambridge University Press; 1998.
  • 72. Williams RF, Metcalf RA, Gust LW. The genesis of form in oleander (Nerium oleander L.). Aust J Bot. 1982;30:677–687. https://doi.org/10.1071/BT9820677
  • 73. Kelly WJ, Cooke TJ. Geometrical relationships specifying the phyllotactic pattern of aquatic plants. Am J Bot. 2003;90(8):1131–1143. https://doi.org/10.3732/ajb.90.8.1131
  • 74. McCully ME, Dale HM. Variations in leaf number in Hippuris. A study of whorled phyllotaxis. Can J Bot. 1961;39:611–625. https://doi.org/10.1139/b61-050
  • 75. Zagórska-Marek B. Phyllotaxic diversity in Magnolia flowers. Acta Soc Bot Pol. 1994;63(2):117–137. https://doi.org/10.5586/asbp.1994.017
  • 76. Wróblewska M, Dołzbłasz A, Zagórska-Marek B. The role of ABC genes in shaping perianth phenotype in the basal angiosperm Magnolia. Plant Biol. 2016;18(2):230–238. https://doi.org/10.1111/plb.12392
  • 77. Greyson RI. The development of flowers. New York, NY: Oxford University Press; Inc; 1994.
  • 78. Fischer JB, French JC. The occurrence of intercalary and uninterrupted meristems in the internodes of tropical monocotyledons. Am J Bot. 1976;63(5):510–525. https://doi.org/10.2307/2441815
  • 79. Rutishauser R, Grubert M. The architecture of Mourera fluviatilis (Podostomaceae): developmental morphology of inflorescences, flowers, and seedlings. Am J Bot. 1999;86(7):907–922. https://doi.org/10.2307/2656607
  • 80. Rutishauser R. Evolution of unusual morphologies in Lentibulariaceae (bladderworts and allies) and Podostomaceae (river-weeds): a pictorial report at the interface of developmental biology and morphological diversification. Ann Bot. 2016;117:811–832. https://doi.org/10.1093/aob/mcv172
  • 81. Fujita T. Phyllotaxis of Cuscuta. Botanical Magazine Tokyo. 1964;77:73–76. https://doi.org/10.15281/jplantres1887.77.73
  • 82. Tomlinson PB, Zimmermann M. Tropical trees as living systems. Cambridge: Cambridge University Press; 2010.
  • 83. Charlton WA. The rotated-lamina syndrome. IV. Relationships between rotation and symmetry in Magnolia and other cases. Can J Bot. 1994;729(1):25–38. https://doi.org/10.1139/b94-005
  • 84. Gola E. Phyllotactic spectra in cacti: Mammillaria species and some genera from Rebutia group. Acta Soc Bot Pol. 1997;66(3–4):237–257. https://doi.org/10.5586/asbp.1997.030
  • 85. Kwiatkowska D. Ontogenetic changes of phyllotaxis in Anagalis arvensis L. Acta Soc Bot Pol. 1995;64(4):319–327. https://doi.org/10.5586/asbp.1995.041
  • 86. Kwiatkowska D. Formation of pseudowhorls in Peperomia verticillata (L.) A. Dietr. shoot exhibiting various phyllotactic patterns. Ann Bot. 1999;83:675–685. https://doi.org/10.1006/anbo.1999.0875
  • 87. Tucker SC. Ontogeny of the floral apex of Michelia fuscata. Am J Bot. 1960;47(4):266–277. https://doi.org/10.2307/2439606
  • 88. Tucker SC. Phyllotaxis and vascular organization of the carpels in Michelia fuscata. Am J Bot. 1961;48(1):60–71. https://doi.org/10.2307/2439596
  • 89. Szymanowska-Pułka M. Phyllotactic patterns in capitula of Carlina acaulis L. Acta Soc Bot Pol. 1994;65(3–4):229–245. https://doi.org/10.5586/asbp.1994.031
  • 90. Williams RF, Brittain EG. A geometrical model of phyllotaxis. Aust J Bot. 1984;32:3–72. https://doi.org/10.1071/BT9840043
  • 91. Schwabe WW. Phyllotaxis. In: Barlow PW, Carr DJ, editors. Positional controls in plant development. Cambridge: Cambridge University Press; 1984. p. 403–440.
  • 92. Meicenheimer RD. Change in Epilobium phyllotaxy during reproductive transitions. Am J Bot. 1982;69(7):1108–1118. https://doi.org/10.2307/2443085
  • 93. Carpenter R, Copsey L, Vincent C, Doyle S, Magrath R, Coen E. Control of flower development and phyllotaxy by meristem identity genes in Antirrhinum. Plant Cell. 1995;7(12):2001–2001. http://dx.doi.org/10.1105/tpc.7.12.2001
  • 94. Meicenheimer RD. Relationships between shoot growth and changing phyllotaxy of Ranunculus. Am J Bot. 1979;66(5):557–569. https://doi.org/10.2307/2442505
  • 95. Richards FJ. Phyllotaxis: its quantitative expression and relation to growth in the apex. Phil Trans R Soc B. 1951;235(629):509–564. https://doi.org/10.1098/rstb.1951.0007
  • 96. Richards FJ. Spatial and temporal correlations involved in leaf pattern production at the apex. In: Milthrope FL, editor. The growth of leaves. London: Butterworths; 1956. p. 66–76.
  • 97. Greyson RI, Walden DB. The ABPHYL syndrome in Zea mays. I. Arrangement, number and size of leaves. Am J Bot. 1972;59(5):466–472. https://doi.org/10.2307/2441527
  • 98. Greyson RI, Walden DB, Hume AJ. The ABPHYL syndrome in Zea mays. II. Pattern of leaf initiation and the shape of the shoot apical meristem. Can J Bot. 1978;56:1545–1550. https://doi.org/10.1139/b78-183
  • 99. Jackson D, Hake S. Control of phyllotaxy in maize by the abphyl1 gene. Development. 1999;126(2):315–323.
  • 100. Giulini A, Wang J, Jackson D. Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature. 2004;430(7003):1031–1034. https://doi.org/10.1038/nature02778
  • 101. Feng G, Qin Z, Yan J, Zhang X, Hu Y. Arabidopsis ORGAN SIZE RELATED1 regulates organ growth and final organ size in orchestration with ARGOS and ARL. New Phytol. 2011;191(3):635–646. https://doi.org/10.1111/j.1469-8137.2011.03710.x
  • 102. Qin Z, Zhang X, Zhang X, Feng G, Hu Y. The Arabidopsis ORGAN SIZE RELATED 2 is involved in regulation of cell expansion during organ growth. BMC Plant Biol. 2014;14:349. https://doi.org/10.1186/s12870-014-0349-5
  • 103. Mandel T, Candela H, Landau U, Asis L, Zelinger E, Cristel C, et al. Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and class III HD-ZIP pathways. Development. 2016;143(9):1612–1622. https://doi.org/10.1242/dev.129973
  • 104. Harris EM. Capitula in Asteridae: a widespread and varied phenomenon. Bot Rev. 1999;65(4):348–369. https://doi.org/10.1007/bf02857754
  • 105. Reinhardt D, Mandel T, Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell. 2000;12(4):507–518. https://doi.org.org/10.1105/tpc.12.4.507
  • 106. Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, et. al. Regulation of phyllotaxis by polar auxin transport. Nature. 2003;426:255–260. https://doi.org/10.1038/nature02081
  • 107. Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, et. al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol. 2005;15(21):1899–1911. https://doi.org/10.1016/j.cub.2005.09.052
  • 108. önsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E. An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci USA. 2006;103(5):1633–1638. https://doi.org/10.1073/pnas.0509839103
  • 109. Smith RS, Guyomarc‘h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P. A plausible model of phyllotaxis. Proc Natl Acad Sci USA. 2006;103(5):1301–1306. https://doi.org/10.1073/pnas.0510457103
  • 110. Paciorek T, Zažímalová E, Ruthardt N, Petrášek J, Stierhof YD, Kleine-Vehn J, et al. Auxin inhibits endocytosis and promotes its own efflux from cells. Nature. 2005;435:1251–1256. https://doi.org/10.1038/nature03633
  • 111. Sauer M, Balla J, Luschni C, Wiśniewska J, Reinöhl V, Friml J, et al. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev. 2006;20(20):2902–2911. https://doi.org/10.1101/gad.390806
  • 112. Baster P, Robert S, Kleine-Vehn J, Vanneste S, Kania U, Grunewald W, et al. SCFTIR1/AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J. 2012;32(2):260–274. https://doi.org/10.1038/emboj.2012.310
  • 113. Paponov IA, Teale WD, Trebar M, Blilou I, Palme K. The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci. 2005;10(4):170–177. https://doi.org/10.1016/j.tplants.2005.02.009
  • 114. Gallavotti A, Yang Y, Schmidt RJ, Jackson D. The relationship between auxin transport and maize branching. Plant Physiol. 2008;147(4):1913–1923. http://dx.doi.org/10.1104/pp.108.121541
  • 115. Gallavotti A. The role of auxin in shaping shoot architecture. J Exp Bot. 2013;64(9): 2593–2608. https://doi.org/10.1093/jxb/ert141
  • 116. Balzan S, Johal GS, Carraro N. The role of auxin transporters in monocots development. Front Plant Sci. 2014;5:393. https://doi.org/10.3389/fpls.2014.00393
  • 117. O’Connor DL, Runions A, Sluis A, Bragg J, Vogel JP, Prusinkiewicz P, et al. A division in PIN-mediated auxin patterning during organ initiation in grasses. PLoS Comput Biol. 2014;10(1):e1003447. https://doi.org/10.1371/journal.pcbi.1003447
  • 118. Palovaara J, Hallberg H, Stosolla C, Luit B, Hakman I. Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues. Tree Physiol. 2010;30(4):479–489. https://doi.org/10.1093/treephys/tpp126
  • 119. Bennett T. PIN proteins and the evolution of plant development. Trends Plant Sci. 2015;20(8):498–507. https://doi.org/10.1016/j.tplants.2015.05.005
  • 120. Bennett TA, Liu MM, Aoyama T, Bierfreund NM, Braun M, Coudert Y, et al. Plasma membrane-targeted PIN proteins drive shoot development in a moss. Curr Biol. 2014;24(23):1–10. https://doi.org/10.1016/j.cub.2014.09.054
  • 121. Sanders HL, Langdale JA. Conserved transport mechanisms but distinct auxin responses govern shoot patterning in Selaginella kraussiana. New Phytol. 2013;198(2): 419–428. https://doi.org/10.1111/nph.12183
  • 122. Boot KJM, Libbenga KR, Hille SC, Offringa R, van Duijn B. Polar auxin transport: An early invention. J Exp Bot. 2012;63(11):4213–4218. https://doi.org/10.1093/jxb/ers106
  • 123. Viaene T, Delwiche CF, Rensing SA, Friml J. Origin and evolution of PIN auxin transporters in the green lineage. Trends Plant Sci. 2013;18(1):5–10. https://doi.org/10.1016/j.tplants.2012.08.009
  • 124. Zhang S, de Boer AH, van Duijn B. Auxin effects on ion transport in Chara coralline. J Plant Physiol. 2016;193:37–44. https://doi.org/10.1016/j.jplph.2016.02.009
  • 125. Merks R, de Peer YV, Inzé D, Beemster G. Canalization without flux sensors: a traveling-wave hypothesis. Trends Plant Sci. 2007;12(9):384–390. https://doi.org/10.1016/j.tplants.2007.08.004
  • 126. Stoma S, Lucas M, Chopard J, Schaedel M, Traas J, Godin C. Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development. PLoS Comput Biol. 2008;4:e1000207. https://doi.org/10.1371/journal.pcbi.1000207.g001
  • 127. Bayer EM, Smith RS, Mandel T, Nakayama N, Sauer M, Prusinkiewicz P, et al. Integration of transport-based models for phyllotaxis and midvein formation. Gene Dev. 2009;23(3):373–384. https://doi.org/10.1101/gad.497009
  • 128. Cieslak M, Runions A, Prusinkiewicz P. Auxin-driven patterning with unidirectional fluxes. J Exp Bot. 2015;66(16):5083–5102. https://doi.org/10.1093/jxb/erv262
  • 129. Namboodiri KK, Beck CB. A comparative study of the primary vascular system of conifers. I. Genera with helical phyllotaxis. Am J Bot. 1968;559(4):447–457. https://doi.org/10.2307/2440574
  • 130. Namboodiri KK, Beck CB. A comparative study of the primary vascular system of conifers. II. Genera with opposite and whorled phyllotaxis. Am J Bot. 1968;55(4):458–463. https://doi.org/10.2307/2440575
  • 131. Larson PR. Phyllotactic transitions in the vascular system of Populus deltoides Bartr. as determined 14C labelling. Planta. 1977;134(3):241–249. https://doi.org/10.1007/BF00384188
  • 132. Larson PR. Interrelations between phyllotaxis, leaf development and the primary-secondary vascular transition in Populus deltoides. Ann Bot. 1980;46(6):757–769.
  • 133. Gola EM, Jernstedt J, Zagórska-Marek B. Vascular architecture in shoots of early divergent vascular plants, Lycopodium clavatum L. and Lycopodium annotinum L. New Phytol. 2007;174(4):774–786. https://doi.org/10.1111/j.1469-8137.2007.02050.x
  • 134. Banasiak A. Putative dual pathway of auxin transport in organogenesis of Arabidopsis. Planta. 2011;233(1):49–61. https://doi.org/10.1007/s00425-010-1280-0
  • 135. Glime JM. Water relations: conducting structures. In: Glime JM, editor. Bryophyte ecology. Volume I. Physiological ecology [Internet]. 2015 [cited 2016 Dec 19]. Available from: http://www.bryoecol.mtu.edu/chapters/7-1Conductstruc.pdf
  • 136. Larson PR. Development and organization of the primary vascular system in Populus deltoides according to phyllotaxy. Am J Bot. 1975;62(10):1084–1099. https://doi.org/10.2307/2442125
  • 137. Girolami G. Relation between phyllotaxis and primary vascular organization in Linum. Am J Bot. 1953;40(8):618–625. https://doi.org/10.2307/2438450
  • 138. Cooke TJ, Poli DB, Sztein AE, Cohen JD. Evolutionary patterns in auxin action. Plant Mol Biol. 2002;49(3):319–338. https://doi.org/10.1023/A:1015242627321
  • 139. Ergün N, Topcuoglu SF, Yildiz A. Auxin (indole-3-acetic acid), gibberellic acid (GA3), abscisic acid (ABA) and cytokinin (zeatin) production by some species of mosses and lichens. Turk J Botany. 2002;26:13–18.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-91e4c5da-2866-46ba-b433-fb2a9da998f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.