PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 01 |

Tytuł artykułu

The salt resistance of wild soybean (Glycine soja Sieb. et Zucc. ZYD 03262) under NaCl stress is mainly determined by Na+ distribution in the plant

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Understanding the salt resistance mechanism of wild soybean is important in improving salt tolerance of cultivated soybean. Therefore, we comparatively analyzed effects of NaCl on photosynthesis, antioxidant enzyme activity, and ion distribution in a cultivated (Glycine. max) and a wild (Glycine soja) soybean to study the salt resistance mechanism of the G. soja. The results showed that more Na⁺ was accumulated in the G. soja roots than in the G. max roots, but the Na⁺ in the G. soja leaves was much less than that observed in the G. max leaves. The Na⁺ concentrations in the G. soja leaves were not high enough to affect the photosynthetic apparatus, which was demonstrated by less inhibition of photosynthetic activity, stomatal conductance, carboxylation efficiency in the G. soja leaves than in the G. max leaves after treated with different concentrations of NaCl. Meanwhile, there were no significant changes in intercellular CO₂ concentration, maximum PSII quantum yield, and relative water content in the G. soja leaves after NaCl treatment, while they significantly decreased in the G. max leaves. The nonphotochemical quenching and the activities of superoxide dismutase (EC 1.15.1.1) and ascorbate peroxidase (EC 1.11.1.11) in the G. soja leaves increased with the increasing of NaCl concentrations, whereas only the activity of superoxide dismutase increased in G. max leaves. Based on these results, we suggested that the G. soja is able to accumulate higher levels of Na⁺ in its roots, and prevent the transportation of Na⁺ to leaves to protect photosynthetic apparatus from salt damage.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

01

Opis fizyczny

p.61-70,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Crop Biology, Tai-an 271018, China
  • College of Life Sciences, Shandong Agricultural University, Tai-an 271018, China
  • Forestry School, Shandong Agricultural University, Tai-an 271018, China
autor
  • State Key Laboratory of Crop Biology, Tai-an 271018, China
  • College of Life Sciences, Shandong Agricultural University, Tai-an 271018, China
autor
  • State Key Laboratory of Crop Biology, Tai-an 271018, China
  • College of Life Sciences, Shandong Agricultural University, Tai-an 271018, China
autor
  • State Key Laboratory of Crop Biology, Tai-an 271018, China
  • College of Life Sciences, Shandong Agricultural University, Tai-an 271018, China

Bibliografia

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701
  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. doi:10.1146/annurev.arplant.59.032607.092759
  • Bingham MJ, Long SP (1985) Equipment for field and laboratory studies of whole plant and crop photosynthesis and productivity research. In: Coombs J, Hall DO, Long SP, Scurlock JMO (eds) Techniques in bioproductivity and photosynthesis, 2nd edn. Pergamon Press, Oxford, pp 229–250
  • Chartzoulakis K, Loupassaki M, Bertaki M, Androulakis I (2002) Effects of NaCl salinity on growth, ion content and CO₂ assimilation rate of six olive cultivars. Sci Hortic 96:235–247. doi:10.1016/S0304-4238(02)00067-5
  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560. doi:10.1093/aob/mcn125
  • Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K (2007) Salt stress impact on the molecular structure and function of the photosynthetic apparatus—the protective role of polyamines. Biochim Biophys Acta 1767:272–280. doi:10.1016/j.bbabio.2007.02.020
  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319. doi:10.1093/jxb/erh003
  • Flowers TJ, Garcia A, Koyama M, Yeo AR (1997) Breeding for salt tolerance in crop plants—the role of molecular biology. Acta Physiol Plant 19:427–433. doi:10.1007/s11738-997-0039-0
  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi:10.1016/S0304-4165(89)80016-9
  • Ghoulam C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47:39–50. doi:10.1016/S0098-8472(01)00109-5
  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314. doi:10.1104/pp.59.2.309
  • Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA 103:16666–16671. doi:10.1073/pnas.0604379103
  • Kuroda Y, Tomooka N, Kaga A, Wanigadeva SMSW, Vaughan DA (2009) Genetic diversity of wild soybean (Glycine soja Sieb. et Zucc.) and Japanese cultivated soybeans [G. max (L.) Merr.] based on microsatellite (SSR) analysis and the selection of a core collection. Genet Resour Crop Evol 56:1045–1055. doi:10.1007/s10722-009-9425-3
  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SSM, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059. doi:10.1038/ng.715
  • Lee JD, Shannon G, Vuong TD, Hguyen HT (2009) Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) Accession PI483463. J Hered 100:798–801. doi:10.1093/jhered/esp027
  • Lu J, Liu Y, Hu B, Zhuang B (1999) Salt glands in Glycine soja L. China. Chin Sci Bull 44:923–926. doi:10.1007/BF02885066
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880. doi:cgi/content/short/22/5/867
  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe 60:324–349. doi:10.1016/j.ecoenv.2004.06.010
  • Peng YH, Zhu YF, Mao YQ, Wang SM, Su WA, Tang ZC (2004) Alkali grass resists salt stress through high [K⁺] and an endodermis barrier to Na⁺. J Exp Bot 55:939–949. doi:10.1093/jxb/erh071
  • Phang TH, Shao G, Lam HM (2008) Salt tolerance in soybean. J Integr Plant Biol 50:1196–1212. doi:10.1111/j.1744-7909.2008.00760.x
  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156. doi:10.1023/A: 1020470224740
  • Ren LL, Ren CM, Zhang WW, Ma B, Gao HY (2009) Effects of short-term NaCl stress on photosynthesis in leaves of Glycine soja and Glycine max. Soybean Sci 28:239–242 (in Chinese with English abstract)
  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C₃ leaves. Plant Cell Environ 30:1035–1040. doi:10.1111/j.1365-3040.2007.01710.x
  • Singh RJ, Hymowitz T (1999) Soybean genetic resources and crop improvement. Genome 42:605–616. doi:10.1139/gen-42-4-605
  • Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z, Zhang Z, Song J, Xu Y (2009a) Ion flux profiles and plant ion homeostasis control under salt stress. Plant Sign Behav 4:261–264. doi:10.4161/psb.4.4.7918
  • Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z, Zhang Z, Song J, Xu Y (2009b) NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol 149:1141–1153. doi:10.1104/pp.108.129494
  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182. doi:10.1016/j.tplants.2008.01.005
  • Takahashi R, Nishio T, Ichizen N, Takano T (2007) Salt-tolerant reed plants contain lower Na⁺ and higher K⁺ than salt-sensitive reed plants. Acta Physiol Plant 29:431–438. doi:10.1007/s11738-007-0052-3
  • Tester M, Davenport R (2003) Na⁺ tolerance and Na⁺ transport in higher plants. Ann Bot 91:503–527. doi:10.1093/aob/mcg058 Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620. doi:10.1016/j.tplants.2005.10.002
  • Yan H, Hu X, Li F (2012) Leaf photosynthesis, chlorophyll fluorescence, ion content and free amino acids in Caragana korshinskii Kom exposed to NaCl stress. Acta Physiol Plant 34:2285–2295. doi:10.1007/s11738-012-1029-4
  • Yang Y, Yan C, Cao B, Xu H, Chen J, Jiang D (2007) Some photosynthetic responses to salinity resistance are transferred into the somatic hybrid descendants from the wild soybean Glycine cyrtoloba ACC547. Physiol Plant 129:658–669. doi:10.1111/j.1399-3054.2006.00853.x
  • Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86. doi:10.1007/s11103-007-9253-9
  • Yousfi S, Rabhi M, Hessini K, Abdelly C, Gharsalli M (2010) Differences in efficient metabolite management and nutrient metabolic regulation between wild and cultivated barley grown at high salinity. Plant Biol 12:650–658. doi:10.1111/j.1438-8677.2009.00265.x
  • Zhou S, Zhao KF (2003) Discussion on the problem of salt gland of Glycine soja. Acta Bot Sin 45:574–580

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-86aeb1f7-ad6c-40b8-847d-533197d685b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.