PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 01 |

Tytuł artykułu

Carrot antifreeze protein enhances chilling tolerance in transgenic tomato

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Key message: The expression of carrot antifreeze protein enhanced chilling tolerance in heterologous host system tomato and AFP can be a potential gene candidate for producing chilling tolerant crop plants. Abstract: In an attempt to improve chilling tolerance, the carrot gene encoding the antifreeze protein (AFP) was cloned under the control of constitutive CaMV35S promoter and genetically transformed the tomato var. PKM1 using Agrobacterium-mediated genetic transformation. Putative transgenic plants were confirmed by PCR using AFP-specific primers and grown to maturity. The integration of AFP transgene in the tomato genome was confirmed by Southern blot analysis. The AFP gene expression in transgenic plants was determined using semi-quantitative reverse transcription PCR. Upon exposure to chilling stress (4°C), a significant decrease in membrane injury index was observed in AFP transgenic tomato lines without any phenotypic aberrations when compared with WT plants. Hence, this study clearly proves that the development of chilling tolerant tomato plants will soon become a reality.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

01

Opis fizyczny

p.21-27,fig.,ref.

Twórcy

autor
  • Plant Genetic Engineering Labotatory, Department of Biotechnology, Bharathiar University, Bharathiar, India
autor
  • Plant Genetic Engineering Labotatory, Department of Biotechnology, Bharathiar University, Bharathiar, India
  • Plant Genetic Engineering Labotatory, Department of Biotechnology, Bharathiar University, Bharathiar, India
  • Plant Genetic Engineering Labotatory, Department of Biotechnology, Bharathiar University, Bharathiar, India
autor
  • Plant Genetic Engineering Labotatory, Department of Biotechnology, Bharathiar University, Bharathiar, India
autor
  • Plant Genetic Engineering Labotatory, Department of Biotechnology, Bharathiar University, Bharathiar, India
  • Plant Genetic Engineering Labotatory, Department of Biotechnology, Bharathiar University, Bharathiar, India

Bibliografia

  • Beck EH, Fetitig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32:501–510.
  • Davis ME, Lineberger RD, Miller AR (1991) Effects of tomato cultivar, leaf age, and bacterial strain on transformation by Agrobacterium tumefaciens. Plant Cell Tis Org Cult 24:115–121.
  • De Vries AL (1971) Glycoproteins as biological antifreeze agents in antarctic fishes. Science 172:1152–1155.
  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15.
  • Duman JG, Olsen MT (1993) Thermal hysteresis protein activity in bacteria, fungi and phylogenetically diverse plants. Cryobiology 30:322–328.
  • Griffith M, Ala P, Yang DS, Hon WC, Moffatt BA (1992) Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol 100:593–596.
  • Gupta N, Rathore M, Goyary D, Khare N, Anandhan S, Pande V, Ahmed Z (2012) Marker-free transgenic cucumber expressing Arabidopsis CBF1 gene confers chilling stress tolerance. Biol Plant 56:57–63.
  • Hays LM, Feeney RE, Crowe LM, Crowe JH, Oliver AE (1996) Antifreeze glycoproteins inhibit leakage from liposomes during thermotropic phase transitions. Proc Natl Acad Sci USA 93:6835–6840.
  • Huang T, Duman JG (2002) Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara. Plant Mol Biol 48:339–350.
  • Kaur P, Bansal KC (2010) Efficient production of transgenic tomatoes via Agrobacterium-mediated transformation. Biol Plant 54:344–348.
  • Khare N, Goyary D, Singh NK, Shah P, Rathore M, Anandhan S, Sharma D, Arif M, Ahmed Z (2010) Transgenic tomato cv. Pusa uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tis Org Cult 103:267–277.
  • Knight CA, DeVries AL (1994) Effects of polymeric, non-equilibrium ‘‘antifreeze’’ upon ice growth from water. J Crys Grow 143:301–310.
  • Kumar SR, Anandhan S, Dhivya S, Zakwan A, Sathishkumar R (2012) Isolation and characterization of cold inducible genes in carrot by suppression subtractive hybridization. Biol Plant 57:97–104.
  • Lyu JL, Min SR, Lee JH, Lim YH, Kim JK, Bae CH, Liu JR (2012) Overexpression of a trehalose-6-phosphate synthase/phosphatise fusion gene enhances tolerance and photosynthesis during drought and salt stress without growth aberrations in tomato. Plant Cell Tis Org Cult. doi:10.1007/s11240-012-0225-7.
  • Mc Cormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (Lycopersicon esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5:81–84.
  • Movahedi S, Sayed Tabatabaei BE, Alizade H, Ghobadi C, Yamchi A, Khaksar G (2012) Constitutive expression of Arabidopsis DREB1B in transgenic potato enhances drought and freezing tolerance. Biol Plant 56:37–42.
  • Park EJ, Jeknic Z, Sakamoto A, Denoma J, Yuwansiri R, Murata N, Chen TH (2004) Genetic engineering of glycine-betaine synthesis in tomato protects seeds, plants and flowers from chilling damage. Plant J 40:474–487.
  • Raj SK, Singh R, Pandey SK, Singh BP (2005) Agrobacterium mediated tomato transformation and regeneration of transgenic lines expressing tomato leaf curl virus coat protein gene for resistance against TLCV infection. Curr Sci 88:1674–1679.
  • Roy R, Purty RS, Agrawal V, Gupta SC (2006) Transformation of tomato cultivar Pusa ruby with bspA gene from Populus tremula for drought tolerance. Plant Cell Tis Org Cult 84:55–67.
  • Rubinsky B, Arav A, Fletcher GL (1991) Hypothermic protection–a fundamental property of ‘‘antifreeze’’ proteins. Biochem Biophys Res Comm 180:566–571.
  • Sharma MK, Solanke AU, Jani D, Singh Y, Sharma AK (2009) A simple and efficient Agrobacterium-mediated procedure for transformation of tomato. J Biosci 34:423–433.
  • Singh S, Rathore M, Goyary D, Singh RK, Anandhan S, Sharma DK, Ahmed Z (2011) Induced ectopic expression of At-CBF1 in marker-free transgenic tomatoes confers enhanced chilling tolerance. Plant Cell Rep. doi:10.1007/s00299-011-1007-0.
  • Smallwood M, Worrall D, Byass L, Elias L, Ashford D, Doucet CJ, Holt C, Telford J, Lillford P, Bowles DJ (1999) Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota). Biochem J 340:385–391.
  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Ann Rev Plant Physiol 35:543–584.
  • Tomczak MM, Hincha DK, Estrada SD, Feeney RE, Crowe JH (2001) Antifreeze proteins differentially affect model membranes during freezing. Biochim Biophys Acta 1511:255–263.
  • Tomczak MM, Hincha DK, Estrada SD, Wolkers WF, Crowe LM, Feeney RE, Tablin F, Crowe JH (2002a) A mechanism for stabilization of membranes at low temperatures by an antifreeze protein. Biophys J 82:874–881.
  • Tomczak MM, Vigh L, Meyer JD, Manning MC, Hincha DK, Crowe JH (2002b) Lipid unsaturation determines the interaction of AFP type I with model membranes during thermotropic phase transitions. Cryobiology 45:135–142.
  • Xu W, Liu M, Shen X, Lu C (2005) Expression of a carrot 36 kD antifreeze protein gene improves cold stress tolerance in transgenic tobacco. For Stud China 7:11–15.
  • Yarra R, He SJ, Abbagani S, Ma B, Bulle M, Zhang WK (2012) Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.). Plant Cell Tis Org Cult 111:49–57.
  • Zhang DQ, Liu B, Feng DR, He YM, Wang SQ, Wang HB, Wang JF (2004a) Significance of conservative asparagines in the thermal hysteresis activity of carrot antifreeze protein. Biochem J 377:589–895.
  • Zhang X, Fowler SG, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Thomashow MF (2004b) Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 39:905–915.
  • Zhu B, Peng RH, Xiong AS, Xu J, Fu XY, Zhao W, Jin XF, Meng XR, Gao JJ, Cai R, Yao QH (2012) Transformation with a gene for myo-inositol O-methyltransferase enhances the cold tolerance of Arabidopsis thaliana. Biol Plant 56:135–141.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a2cd99cf-d1fe-4f9f-858b-89eee68f86f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.