PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 20 | 3 |

Tytuł artykułu

Effect of plant growth on total concentrations of Zn, Pb and Cd and their distribution between operational fractions in the upper layer of a 100-year-old zinc-lead waste heap

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study determined total concentrations and operational fractions of Zn, Pb, and Cd from sequential extraction in samples originating from the 0-15 cm upper layer of a 100-year-old calamine waste heap in Bolesław, Poland. Also investigated was the accumulation of the heavy metals in the tissues of Biscutella laevigata plants growing on the heap, and microbial activity (number and enzymatic activities) in the samples. Sequential extractions of heap material indicated that the exchangeable fraction (considered as bioavailable) of all the tested heavy metals was less than 0.5% of their total concentrations. Plant growth was found to have an effect on soil organic matter accumulation, number of fungi, enzymatic activity, and distribution of Zn, Pb, and Cd between operational fractions in the heap material. The number of isolated microorganisms and their enzymatic activities in samples with plant cover were almost the same as or higher than those in non-contaminated soils under vegetation with similar physico-chemical properties, as studied by other authors.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

3

Opis fizyczny

p.591-597,fig.,ref.

Twórcy

autor
  • Department of Environmental Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University in Lublin, Akademicka 19, 20-033 Lublin, Poland

Bibliografia

  • 1. McGRATH S.P. Metal concentration in sludge and soil from a long-term field trial. J. Agr. Sci., 103, 25, 1984.
  • 2. GODZIK B. Heavy metals contents in plants from zinc dumps and reference areas. Polish Bot. Stud., 5, 113, 1993.
  • 3. WIERZBICKA M., PANUFNIK D. The adaptation of Silene vulgaris to growth on a calamine waste heaps (S.Ponad). Environ. Pollut., 101, 415, 1998.
  • 4. GUPTA S.K., ATEN C. Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentration in contaminated soil. Intern. J. Environ. Anal. Chem., 51, 25, 1993.
  • 5. HUANG P.M., GERMIDA J.J. Chemical and biological processes in the rhizosphere: metal pollutants, in: Huang, P.M., Bollag, J.-M., Senesi, N., (Eds.), Interaction between Soil Particle and Microorganisms. John Wiley & Sons, LTD, Chichester, pp. 381-338, 2002.
  • 6. LEITA L., DE NOBILI M., MUHLBACHOVA G., MONDINI C., MARCHIOL L., ZERBI G. Bioavalability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biol. Fertil. Soil, 19, 103, 1995.
  • 7. GILLER K.E., WITTER E., McGRATH S.P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol. Biochem., 30, 1389, 1998.
  • 8. PEREZ-DE-MORA A., BURGOS P., MADEJON E., CABRERA F., JAECKEL P., SCHLOTER M. Microbial community structures and function in soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biol. Biochem., 38, 327, 2006.
  • 9. ELLIS R.J., MORGAN P., WEIGHTMAN A.J., FRY J.C. Cultivation-dependant and independant approaches for determining bacterial diversity in heavy-metal contaminated soil. Appl. Environ. Microbiol., 69, 3223, 2003.
  • 10. PRASAD M.N.V. Phytoremediation of metal-polluted ecosystems: Hype for commercialization. Russ. J. Plant Physiol., 50, 764, 2003.
  • 11. HATTENSCHWILER S., VITOUSEK P.M. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol. Evol., 15, 238, 2000.
  • 12. MERTENS J., VAN NEVEL L., DE SCHRIJVER A., PIESSCHAERT F., OOSTERBAAN A., TACK F.M.G., VERHEYEN K. Tree species effect on the redistribution of soil metals. Environ. Pollut., 149, 173, 2007.
  • 13. TORDOFF G.M., BAKER A.J.M., WILLIS A.J. Current approaches to the revegetation and reclamation of metalliferous wastes. Chemosphere, 41, 219, 2000.
  • 14. LITYŃSKI T., JURKOWSKA H., GORLACH E. Chemical and agricultural analysis. Methodical guidebook to analysis of soil and fertilizers. PWN, Warszawa, 1976 [In Polish].
  • 15. ALEF K., NANNIPIERI P. Methods in applied soil microbiology and biotechnology. Academic Press, London, Great Britain, 1995.
  • 16. KELLER C., VEDY J.-C. Heavy metals in the environment: Distribution of cooper and cadmium fraction in two forest soils. J. Environ. Qual., 23, 987, 1994.
  • 17. MAJEWSKA M., KUREK E., SZLACHETKA D. Microbial activity – factor increasing retention of Cd added to soil. Polish J. Environ. Stud., 15, (2a), 127, 2006.
  • 18. UGWUANYI J.O., OBETA J.A.N. Pectynolytic and celluloplytic activities of heat resistant fungi and their macerating effects on mango and African mango. J. Sci. Agr., 79, 1054, 1999.
  • 19. IKEDA K., TOYOTA K., KIMURA M. Role of extracellural pectinase in the rhizoplane competence of a rhizobacterium Burkholderia pickettii MSP3RIF. Soil Biol. Biochem., 30, 323, 1998.
  • 20. MARTIN J.P. Use of acid, rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci., 38, 215, 1950.
  • 21. CASIDA L.E. Microbial metabolic activity in soil as measured by dehydrogenase determinations. Appl. Environ. Microb., 34, 630, 1977.
  • 22. ATKIN C.L., NEILANDS J.B., PHAFF H. Rhodotorulic acid from species of Rhodospirillum, Rhodotorula, Sporidiobolus and Sporobolomyces. J. Bacteriol., 103, 722, 1970.
  • 23. CSAKY T.Z. On the estimation of bound hydroxylamine in biological materials, Acta Chemica Scandinavica 2, 370, 1948.
  • 24. ARNOW L.E. Colorimetric determination of the components of 3,4-dihydroksyphenylalanine – tyrosine mixtures. J. Biol. Chem., 228, 531, 1937.
  • 25. BRADFORD M.M. A rapid and sensitive method for quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248, 1976.
  • 26. De ASCENCAO A.R.F.D.C., DUBERY I.A. Soluble and wall-bound phenolics and phenolic polymers in Musa acuminataroots exposed to elicitors from Fusarium oxysporum f.sp. cubense. Phytochemistry 63, 679, 2003.
  • 27. WENZEL W.W., JOCKWER F. Accumulation of heavy metals in plants growth on mineralized soils of the Australian Alps. Environ. Pollut., 104, 41, 1999.
  • 28. ANDERSON C.W.N., BROOKS R.R., CHIARUCCI A., COSTE C.J., LEBLANC M., ROBINSON B.H., SIMCOCK R., STEWART R.B. Phytominig for nickiel, thallium and gold. J. Geochem. Explor., 67, 407, 1999.
  • 29. BAKER A.J.M., BROOKS R.R. Terrestial higher plants which accumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81, 1989.
  • 30. WIERZBICKA M., PIELICHOWSKA M. Adaptation of Biscutella laevigata L, a metal hyperaccumulator, to growth on zinc-lead waste heap in southern Poland. I: Differences between waste-heap and mountain population. Chemosphere 54, 1663, 2004.
  • 31. SZAREK-ŁUKASZEWSKA G., NIKLIŃSKA M. Concentration of alkaline and heavy metals in Biscutella laevigata L. and Plantago lanceolata L. growing on calamine soils (S. Poland). Acta Biol. Cracov. Bot., 44, 29, 2002.
  • 32. BOUCHER U., LAMY I., CAMBIER P., BALABANE M. Decomposition of leaves of the metallophyte Arabidopsis halleri in soil microcosms: fate of Zn and Cd from plant residues. Environ. Pollut., 135, 323, 2005.
  • 33. KUREK E., JAROSZUK J. Changes in the number of Fusarium propagules introduced to soil. Pol. J. Soil Sci., 30, (1), 63, 1997.
  • 34. KANDELER E., TSCHERKO D., BRUCE K.D., STEMMER M., HOBBS P.J., BARDGETT R.D., AMELUNG W. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol. Fertil. Soils, 32, 390, 2000.
  • 35. LORENZ N., HINTEMANN T., KRAMAREWA T., KATAYANA A., YASUTA T., MARSCHNER P., KANDELER E. Response of microbial activity and microbial community composition in soil to long-term arsenic and cadmium exposure. Soil Biol. Biochem., 38, 1430, 2006.
  • 36. FREY B., STEMMER M., WIDMER F., LUSTER J., SPERISEN C. Microbial activity and community structure of a soil after heavy metal contamination in a model forest ecosystem. Soil Biol. Biochem., 38, 1745, 2006.
  • 37. KUPERMAN R.G., CARREIRO M.M. Soil heavy metal concentration, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol. Biochem., 29, 179, 1997.
  • 38. BARGETT R., SPEIR T., ROSS D., YEATES G., KETTLES H. Impact of pasture contamination by cooper, chromium, and arsenic timber preservative on soil microbial properties and nematodes. Biol. Fertil. Soils., 18, 71, 1994.
  • 39. KANDELER E., KAMPICHLER C., HORAK O. Influence of heavy metals on the diversity of soil microbial communities. Biol. Fertil. Soils, 23, 299, 1996.
  • 40. NANNIPIERI P., KANDELER E., RUGGIERO P. Enzyme activity as monitors of soil microbial functional diversity, in: Burns R.G., Dick R., (Eds.), Enzymes in the environment: activity, ecology and applications. Marcel Dekker, New York, pp. 234-251, 2002.
  • 41. IBEKWE A.M., ANGLE J.S., CHANEY R.L. Zinc and cadmium toxicity to Alfalfa and its microsymbiont. J. Environ. Qual., 25, 1032, 1996.
  • 42. PARENT L., TWISS M.R., CAMPBELL P.G.C. Influence of natural dissolved organic matter on the interaction of aluminium with the microalga Chlorella: a test of the free-ion model of trace metal toxicity. Environ. Sci. Technol., 30, 1713, 1996.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-f4eba486-ee19-475f-8cbc-d9479b4af0b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.