PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 20 | 1 |

Tytuł artykułu

Zooplankton of Fish Culture Ponds Periodically Fed with Treated Wastewater

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study investigated three earth fish ponds fed with biologically treated wastewater from the treatment plant in Olsztynek. The ponds were stocked with the following fish species with a varied age structure: common carp (Cyprinus carpio), tench (Tinca tinca), European pike-perch (Sander lucioperca), and roach (Rutilus rutilus). Zooplankton samples were collected once a month, from April to October 2007. Rotatoria were the most diverse and the most abundant zooplankton community. The zooplankton biomass in all ponds was dominated by crustaceans, including such species as Keratella cochlearis, Keratella quadrata, Polyarthra longiremis, Brachionus angularis, young forms of Copepoda (nauplii and copepodites), as well as Daphnia longispina and Thermocyclops crassus. The greatest faunal similarities between the analyzed zooplankton groups were determined in ponds 1 and 2, while the greatest differences were noted between ponds 2 and 3. The structure and dynamics of zooplankton changes in the investigated ponds were determined mostly by trophic relationships and interspecies interactions, while fish predation pressure supported greater species diversity and its reinstatement.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

1

Opis fizyczny

p.67-79,fig.,ref.

Twórcy

  • Department of Applied Ecology, University of Warmia and Mazury, Oczapowskiego 5, 10-957 Olsztyn, Poland
autor

Bibliografia

  • 1. EDWARDS P. Development status of, and prospects for, wastewater-fed Aquaculture in urban environments. In Urban Aquaculture edited by Costa-Pierce B., Desbonnet A., Edwards P., Baker D. CABI Publishing. pp. 45-59, 2005.
  • 2. DANIELEWSKI S. Purification and utilization of communal and dairy sewage in ponds. Rocz. Nauk Roln. Ser. 100, 2, 2, 1983 [In Polish].
  • 3. OLACH J., SHARANGI N., DATTA N. C. City sewage fish ponds in Hungary and India. Aquaculture, 54, 129, 1986.
  • 4. FAINA R., KUBU F., VALENTA S. Fish culture in the Dremliny stabilization pond. Prace VURH Vodnany, 17, 100, 1988.
  • 5. WOLNY P. The use purified town sewage for fish rearing. Rocz Nauk Roln 81-B-2, 231, 1962 [In Polish].
  • 6. TUCHOLSKI S. Fish rearing in ponds fed with treated wastewater. Wydawnictwo IRŚ, Olsztyn pp. 1-20, 1994 [In Polish].
  • 7. KUCZYŃSKI M., KOLASA-JAMIŃSKA B., LEWKOWICZ S., PILARCZYK M. Production of two-year-old carp in ponds supplied with biologically pre-treated municipal sewage. Acta Sci. Pol., Piscaria 2, (1), 159, 2003.
  • 8. TUCHOLSKI S. Fertilization value of rural sewage from a mechanical – biological treatment plant. Zesz. Prob. Post. Nauk Rol. 472, 87, 2001 [In Polish].
  • 9. TUCHOLSKI S., NIEWOLAK S. Fish ponds as tertiary treatment in a small biological sewage treatment plant. Zesz.Nauk.AR. Wrocław 246, 179, 1994.
  • 10. TRZEBIATOWSKI R., GAJ J. Growth, feeding and economic importance of smelt (Osmerus eperlanus L.) in Lake Miedwie. Acta Ichtiologica et Piscatoria, Szczecin VIII, (2), 23, 1978.
  • 11. MILLS E. L., CONFER J. L., KRETCHMER D. W. Zooplankton selection by young yellow perch: the influence of light, prey density, and predator size. Transactions of American Fisheries Society B, 716, 1986.
  • 12. MARMULLA G., ROSCH, R. Maximum daily ration of juvenile fish fed on living natural zooplankton. J. Fish. Biol. 36, 789, 1990.
  • 13. SUTELA T., HUUSKO A. Prey selection and the density of suitable food for vendace (Coregonus albula) larvae in Lake Lentua. Arch. Hydrobiol Spec Issues Advanc Limnol. 50, 39, 1998.
  • 14. FLINKMAN J., VUORINEN I., ARO E. Planktivorous Baltic herring (Clupea harengus) prey selectively on reproducing Copepods and Cladocerans. Can. J. Fish. Aquat. Sci. 49, 73, 1992.
  • 15. ARRHENIUS F. Diet composition and food selectivity of 0-group herring (Clupea harengus L.) and sprat (Sprattus sprattus (L.)) in the northern Baltic Sea. ICES Journal of Marine Science 53, 701, 1996.
  • 16. RAJASILTA M., VUORINEN I. A field study of prey selection in planktivorous fish larvae. Oecologia 59, 65, 1983.
  • 17. SUTELA T., HUUSKO A. Varying resistance of zooplankton prey to digestion: implications for quantifying larval fish diets. Transactions of the American Fisheries Society 129, 545, 2000.
  • 18. SUTELA T., HUUSKO A. Digestion of zooplankton in the alimentary tract of vendace (Coregonus albula) larvae. J. Fish Biol. 44, 591, 1994.
  • 19. SUTELA T., HUUSKO A. Food consumption of vendace Coregonus albula larvae in Lake Lentua, Finland. J. Fish Biol. 51, 939, 1997.
  • 20. MUNK P. Prey size spectra and prey availability of larval and small juvenile cod. J.Fish Biol. 51, (A), 340, 1997.
  • 21. PEPIN P., PENNEY R. W. Patterns of prey size and taxonomic composition in larval fish: are there general sizedependent models? J. Fish. Biol. 51, (A), 84, 1997.
  • 22. TIMMERMAN C. M., ANNETT A., BAILEY C. F. Determination of factors limiting prey size swallowed by larval and small juvenile largemouth bass. Transactions of the American Fisheries Society 129, 618, 2000.
  • 23. DZIERZBICKA-GŁOWACKA L. Encounter rates in zooplankton. Polish J. Environ. Stud. 15, (2), 2006.
  • 24. FOSSUM P. A study of first-feeding herring (Clupea harengus L.) larvae during the period 1985-1993. ICES J. Mar. Sci. 53, 51, 1996.
  • 25. LAMMENS E.H.R.R. The central role of fish in lake restoration and management. Hydrobiologia 395/396, 191, 1999.
  • 26. FLOSSNER von D. Crustacea, Branchiopoda, Phyllopoda, Cladocera. VEB Gustav Fischer Verlag, Jena 1972.
  • 27. STREBLE H., KRAUTER D. Life in water-drop. Freshwater microflora and mickrofauna. Kosmos. Stuttgart. pp. 1-330, 1978.
  • 28. RADWAN S. (Ed.). Freshwater fauna of Poland. Rotifers (Rotifera). Zeszyt 32 A i 32 B. Pol. Tow. Hydrobiol., UŁ, Oficyna Wydaw. Tercja. Łodź. pp. 1-430, 2004 [In Polish].
  • 29. RYBAK J.I., BŁĘDZKI L.A. Copepods. Copepoda: Cyclopida. Key for determination. Insp. Ochr. Środ. Biblioteka Monit. Środowiska. Warszawa. pp. 1-127, 2005 [In Polish].
  • 30. STARMACH K. Plankton analysis methods. PWRiL, Warszawa. 1955 [In Polish].
  • 31. HERNROTH L. Recommendations on methods for marine biological studies in the Baltic Sea. Mesozooplankton biomass assessment. The Baltic Biologists Publication No. 10. Working Group 14. 1985.
  • 32. MARGALEF R. Information theory in ecology. Gen. Syst., 3, 36, 1957.
  • 33. SHANNON C.E. A mathematical theory of communication. Bell System Technical Journal, 27, 379, 1948.
  • 34. PIELOU E. C. Ecological Diversity. John Wiley & Sons Inc., New York. 1975.
  • 35. MARCZEWSKI E., STEINHAUS H. Taxonomic distance of biotopes. Zast. Mat., 4, 195, 1959 [In Polish].
  • 36. CLARKE K.R. Non – parametric multivariate analyses of changes in community structure. Aust. J. Ecol., 18, 117, 1993.
  • 37. SOKAL R. R., ROHLF F. J. Biometry. 2nd ed. W. H. Freeman & Co., New York. 1981.
  • 38. ZAR J. H. Biostatistical Analysis. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall. 1984.
  • 39. WIDUTO J., TUCHOLSKI S. Raising fish and large cladocerans together in waste stabilization ponds. Mat. Zjazd. PTH. Wrocław, pp. 149, 1994 [In Polish].
  • 40. WIDUTO J., BOWSZYS M., KACZMAREK D. Zooplankton growth dynamics in sewage-fed fish ponds under intensive farming conditions. Mat. Zjazd. PTH. Poznań, 123, 1997 [In Polish].
  • 41. RADWAN S. Planktonic rotifers as indicators of Lake trophy. Ann. UMCS, Sect. C, 31, 227, 1976.
  • 42. KARABIN A. Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake eutrophication. I. Structural and quantitative features. Ecol. Pol. 33, (4), 567, 1985.
  • 43. PATUREJ E., GOŹDZIEJEWSKA A. Zooplankton-based assessment of the trophic state of three coastal lakes – Łebsko, Gardno, and Jamno. Buul. Sea Fisch. Inst. 3, (166), 7, 26, 2005.
  • 44. ROCHE K. F. Growth of the rotifer Brachionus calyciflorus Pallas in dairy waste stabilization ponds. Wat. Res. 23, (10), 2255, 1995.
  • 45. BIENIARZ K., KOWNACKI A. EPLER P. Fish pond biology. Wyd. IRŚ w Olsztynie. 356, 2003 [In Polish].
  • 46. WISZNIEWSKI J. Differenciation ecologiques des rotifers dans la psammon d’eaux Douces. Ann. Mus. Zool. Pol. 12, 221, 1937.
  • 47. BIELAŃSKA-GRAJNER I. Preliminary investigations of psammon rotifers in two reservoirs in Upper Silesia. Oceanol. Hydrobiol. Stud. 33, 1, 37, 2004.
  • 48. ALTINDAĜ A. A taxonomical study on the rotifer fauna of Yedigoller (Boln – Turkey).Turk. J. Zool. 24, 1, 2000.
  • 49. SERAFIM M. Jr., BONECKER C.C., ROSSA D.C., LANSAC-TOHA F.A., COSTA C.L. Rotifers of the Upper Parana River Floodplain: Additions to the checklist. Braz. J. Biol., 63, (2), 207, 2003.
  • 50. ENDLER Z., GOŹDZIEJEWSKA A., JAWORSKA B., GRZYBOWSKI M. The effect of a small hydroelectric power station on the Dymer River on planktonic organisms. Acta Sci. Pol., Formatio Circumiectus. 2006 [In Polish].
  • 51. GILBERT J.J. Suppression of rotifer populations by Daphnia, a review of the evidence, the mechanism and the effects on zooplankton community structure. Limnol. Oceanogr. 33, (1), 1286, 1988.
  • 52. LAMPERT W., SOMMER U. Ekologia wod środlądowych. Wyd. Nauk. PWN. Warszawa. pp. 195-271, 2001.
  • 53. SANTER B., van den BOSCH F. Herbivorous nutrition of Cyclops vicinus: the effect of a pure algal diet on feeding, development, reproduction and life cycle. J. Plankton Res. 16, (2), 171, 1994.
  • 54. MAKINO W., BAN S. Diet changes in vertical overlap between Cyclops strenuus (Copepoda; Cyclopoida) and its prey in oligotrophic Lake Toya, Hokkaido, Japan. J. Mar. Syst. 15, (1-4), 139, 1998.
  • 55. PLASSMANN T., MAIER G., STICH H.B. Predation impact of Cyclops vicinus on the rotifer community in Lake Constance in spring. J. Plankton Res. 19, (8), 1069, 1997.
  • 56. DEVETTER M., SEĎA J. Regulation of rotifer community by predation of Cyclops vicinus (Copepoda) in the Řimov Reservoir in spring. Int. Rev. Hydrobiol. 91, 1, 101, 2006.
  • 57. ROCHE K F. Growth potential of Daphnia magna Straus in the water of dairy waste stabilization ponds. Wat. Res. 32, (4), 1325, 1998.
  • 58. BRYLIŃSKA M. (Ed.). Freshwater fish of Poland. Wydawnictwo Naukowe PWN, Warszawa, pp. 428, 1991 [In Polish].
  • 59. DĄBROWSKI K. Critical stage in the life of fish hatchlings. An attempt to determine minimum dietary energy requirements. Wiad.Ekol. 21, 277, 1975 [In Polish].
  • 60. DRENNER R.W., STRICKLER J.R., O’BRIEN W.J. Capture probability: the role of zooplankton escape in the selective feeding of planktivorous fish. J. Fish. Res. Board Can. 35, 1370, 1978.
  • 61. PERSSON L. Competition-induced switch in young of the year perch, Perca fluviatilis: an experimental test of resource limitation. Environ. Biol. Fish 19, (3), 235, 1987.
  • 62. WINFIELD I. J., TOWNSEND C. R. Factors affecting prey selection by young bream Abramis brama and roach Rutilus rutilus: insights provided by parallel studies in laboratory and field. Environ. Biol. Fish. 21, (4), 279, 1988.
  • 63. CUNHA I., PLANAS M. Optima prey size for early turbot larvae (Scopthalmus maximus L.) based on mouth and ingested prey size. Aquaculture 175, 103, 1999.
  • 64. OSSE J.W.M., van den BOOGAART J.G.M., van SINK G.M.J., van den SLUYS L. Priorities during early growth of fish larvae. Aquaculture 155, (1997), 249, 1997.
  • 65. LJUNGGREN L. Growth response of pikeperch larvae in relation to body size and zooplankton abundance. J. Fish. Biol. 60, 405, 2002.
  • 66. GOŹDZIEJEWSKA A. Feeding behavior of larvae and early juvenile stages of the smelt Osmerus eperlanus (L.) in the Vistula Lagoon. UWM in Olsztyn. Doctoral thesis. 2004 [In Polish].
  • 67. HAMMER C. Feeding behaviour of roach (Rutilus rutilus) larvae and the fry of perch (Perca fluviatilis) in Lake Lankau. Arch. Hydrobiol. 103, (1), 61, 1985.
  • 68. PERSSON L. Effects of habitat and season on competitive interactions between roach (Rutilus rutilus) and perch (Perca fluviatilis). Oecologia (Berlin) 73, 170, 1987.
  • 69. RAHMAN M.M., VERDEGEM M.C.J., NAGELKERKE L.A.J., WAHAB M.A., MILSTEIN A., VERRETH J.A.J. Growth, production and food preference of rohu Labeo rohita (H.) in monoculture and in polyculture with common carp Cyprinus carpio (L.) under fed and non-fed ponds. Aquaculture 257, 359, 2006.
  • 70. KERFOOT W.CH., SIH A. Predation. Direct and Indirect Impacts on Aquatic Communities. University Press of New England. Hanover and London, pp. 149-160, 1987.
  • 71. JAKUBAS M. Natural food base of the carp in ponds with different levels of production intensification. AR w Szczecinie, Wydz. RM i TŻ. Doctoral thesis. 2001 [In Polish].

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-e9ff1985-d521-4e15-8778-225b6f2f183a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.