PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 56 | 1 |

Tytuł artykułu

The weathering-modified iridium record of a new Cretaceous–Palaeogene site at Lechowka near Chelm, SE Poland, and its palaeobiologic implications

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the light of integrated biostratigraphic and geochemical data, a complete shallow−marine succession across the Cretaceous–Palaeogene (K–Pg) boundary, with the critical boundary clay coupled with a burrowed siliceous chalk (“opoka” in Polish geological literature), possibly equivalent of the basal Danian Cerithium Limestone in Denmark, has been discovered at Lechówka near Chełm, SE Poland. An extraterrestrial signature marking the K–Pg boundary is confirmed by anomalously high amounts of iridium (up to 9.8 ppb) and other siderophile elements (especially Au and Ni), as well as by an elevated Ir/Au ratio consistent with a chondrite meteoritic composition. The major positive iridium spike surprisingly occurs in Maastrichtian marls, 10 cm below the boundary clay interval, which can be explained by diagenetic mobilisation and re−concentration of the impact−derived components. Thus, intensively infiltrating, humic acid−rich ground waters during the long−lasting Palaeogene weathering in tropical humid regimes were probably responsible not only for the large−scale decalcification of the Lechówka section, but also for both downward displaced position of the iridium enrichment, a dispersed profile of this anomaly and its significantly lessened value, but still approaching an increase by a factor of 100. This modified record of the K–Pg boundary event points to a careful reconsideration of the iridium anomaly as a trustworthy marker for studying the extinction patterns across the K–Pg boundary, as supported by the recent data from New Jersey, USA.

Wydawca

-

Rocznik

Tom

56

Numer

1

Opis fizyczny

p.205-215,fig.,ref.

Twórcy

autor
  • Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
autor
autor

Bibliografia

  • Abdel−Gawad, G.I. 1986. Maastrichtian non−cephalopod mollusks (Scaphopoda, Gastropoda and Bivalvia) of the Middle Vistula Valley, Central Poland. Acta Geologica Polonica 36: 69–224.
  • Alvarez, W. 2003. Comparing the evidence relevant to impact and flood basalt at times of major mass extinctions.Astrobiology 3: 153–161. [CrossRef]
  • Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V. 1980. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208: 1095–1108. [CrossRef]
  • Baird, G.C. and Fürsich, F.T. 1975. Taphonomy and biologic progression associated with submarine erosion surfaces from the German Lias. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 6: 321–338.
  • Bruns, P., Rakoczy, H., Pernicka, E., and Dullo, W.C. 1997. Slow sedimentation and Ir anomalies at the Cretaceous/Tertiary boundary. Geologische Rundschau 86: 168–177.
  • Chai, C.F., Kong, P., Mao, X.Y., and Ma, S.L. 1995. Molecular activation analysis for iridium. Journal of Radioanalytical and Nuclear Chemistry 192: 101–108. [CrossRef]
  • Claeys, P., Kiessling, W., and Alvarez, W. 2002. Distribution of Chicxulub ejecta at the Cretaceous–Tertiary boundary. In: C. Koeberl and K.G. MacLeod (eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Paper 356: 55–68.
  • Colodner, D.C., Boyle, E.A., Edmond, J.M., and Thomson, J. 1992. Postdepositional mobility of platinum, iridium and rhenium in marine sediments. Nature 358: 402–404. [CrossRef]
  • Crocket, J.H., Officer, C.B., Wezel, F.C., and Johnson, G.D. 1988. Distribution of noble metals across the Cretaceous/Tertiary boundary at Gubbio, Italy: iridium variation as a constraint on the duration and nature of Cretaceous/Tertiary boundary events. Geology 16: 77–88. [CrossRef]
  • Dai, X.G., Chai, Z.F., Mao, X.Y., and Hong, O.Y. 2000. Sorption and desorption of iridium by coastal sediment: effects of iridium speciation and sediment components.Chemical Geology 166: 15–22. [CrossRef]
  • Ebihara, M. and Miura, T. 1996. Chemical characteristics of the Cretaceous–Tertiary boundary layer at Gubbio, Italy. Geochimica et Cosmochimica Acta 60: 5133–5144. [CrossRef]
  • Evans, N.J. and Chai, C.F. 1997. The distribution and geochemistry of platinum−group elements as event markers in the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 132: 373–390. [CrossRef]
  • Frei, R. and Frei, K.M. 2002. A multi−isotopic and trace element investigation of the Cretaceous–Tertiary boundary layer at Stevns Klint, Denmark—inferences for the origin and nature of siderophile and lithophile element geochemical anomalies. Earth and Planetary Science Letters 203: 691–708. [CrossRef]
  • French, B.M. and Koeberl, C. 2010. The convincing identification of terrestrial meteorite impact structures: what works, what doesn't, and why. Earth−Science Reviews 98: 123–170. [CrossRef]
  • Gallala, N., Zaghbib−Turki, D., Arenillas, J., Arz, J.A., and Molina, E. 2009. Catastrophic mass extinction and assemblage evolution in planktic foraminifera across the Cretaceous/Paleogene (K/Pg) boundary at Bidart (SW France). Marine Micropaleontology 72: 196–209.
  • Gabrielli, P., Barbante, C., Plane, J.M.C., Varga, A., Hong, S., Cozzi, G., Gaspari, V., Planchon, F.A.M., Cairns, W., Ferrari, C., Crutzen, P., Cescon, P. and Boutron, C.F. 2004. Meteoric smoke fallout over the Holocene epoch revealed by iridium and platinum in Greenland ice. Nature 432: 1011–1014.
  • Gavrilov, Y.O. 2010. Diagenetic migration of sulfides in sediments accumulated in different sedimentation settings. Lithology and Mineral Resources 45: 120–135. [CrossRef]
  • Gazda, L., Harasimiuk, M., and Krzowski, Z. 1992. Litogeneza warstw z glaukonitem w górnej kredzie i paleocenie Pagórów Chełmskich (Wyżyna Lubelska, E Polska). Annales Universitatis Mariae Curie−Skłodowska, Sectio B Geographia, Geologia, Mineralogia et Petrographia 47: 1–24.
  • Hansen H.J., Rasmussen K.L., Gwozdz R., Hansen J.M., and Radwański A. 1989. The Cretaceous/Tertiary boundary in Poland. Acta Geologica Polonica 39: 1–12.
  • Harasimiuk, M. and Rutkowski, J. 1984. Osady pogranicza kredy i trzeciorzędu rejonu Chełma i Rejowca (Staw). In: M. Harasimiuk (ed.), Przewodnik LVI Zjazdu Polskiego Twarzystwa Geologicznego, Lublin, 6–8 września 1984, 157–164. Wydawnictwa Geologiczne, Warszawa.
  • Huber, H., Koeberl, C., King, D.T. Jr., Petruny, L.W., and Montanari, A. 2001. Effects of bioturbation through the Late Eocene impactoclastic layer near Masignano, Italy. In: E. Buffetaut and C. Koeberl (eds.), Geological and Biological Effects of Impact Events (Impact Studies), 197–216. Springer Verlag, Berlin.
  • Kaźmierczak, J. 1974. Crustacean associated hiatus concretions and eogenetic cementation un the Upper Jurassic of central Poland. Neues Jahrbuch für Geologie und Palaeontologie Abhandlungen 147: 329–342.
  • King, C. 2006. 16 Paleogene and Neogene: uplift and a cooling of climate. In: P.J. Brenchley and P.F. Rawson (eds.), The Geology of England and Wales, 2nd edition, 395–428. Geological Society Publishing House, London.
  • Koeberl, C. 2007. The geochemistry and cosmochemistry of impacts. In: A. Davis (ed.), Treatise of Geochemistry, Vol. 1, online edition, 1.28.1–1.28.52. Elsevier, New York. [CrossRef]
  • Kramar, U., Stüben, D., Berner, Z., Stinnesbeck, W., Philipp, H., and Keller, G. 2001. Are Ir anomalies sufficient and unique indicators for cosmic events? Planetary and Space Science 49: 831–837. [CrossRef]
  • Krach, W. 1981. Fauna i stratygrafia paleocenu środkowej Wisły. Studia Geologica Polonica 71: 1–80.
  • Kring, D.A. 2007. The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 255: 4–21. [CrossRef]
  • Krzowski, Z. 2000. Glauconite and its Geological Applications. 139 pp. Wydawnictwo Politechniki Lubelskiej, Lublin.
  • Kyte, F.T., Smit, J., and Wasson, J.T. 1985. Siderophile interelement variations in the Cretaceous–Tertiary boundary sediments from Caravaca, Spain. Earth and Planetary Science Letters 73: 183–195. [CrossRef]
  • Landman, N.H., Johnson, R.O., Garb, M.P., Edwards, L.E., and Kyte, F.T. 2007. Cephalopods from the Cretaceous/Tertiary boundary interval on the Atlantic coastal plain, with a description of the highest ammonite zones in North America. Part III. Manasquan River Basin, Monmouth County, New Jersey. Bulletin of the American Museum of Natural History 303: 1–122. [CrossRef]
  • Landman,N.H., Johnson, R.O.,Garb, M.P., Edwards, L.E., and Kyte, F.T. 2010. Ammonites from the Cretaceous/Tertiary boundary, New Jersey. In: K. Tanabee (Y. Shigeta, T. Sasaki, and H. Hirano (eds.), Cephalopods—Present and Past, 287–295. Tokai University Press, Tokyo.
  • Łopuski, C. 1911. Przyczynki do znajomości fauny kredowej guberni lubelskiej. Sprawozdania Towarzystwa Naukowego Warszawskiego 4: 104–140.
  • Machalski, M. 1998. Granica kreda–trzeciorzęd w przełomie Wisły. Przegląd Geologiczny 46: 1153–1161.
  • Machalski, M. 2005a. The youngest Maastrichtian ammonite faunas in Poland and their dating by scaphitids.Cretaceous Research 26: 813–836.
  • Machalski, M. 2005b. Late Maastrichtian and earliest Danian scaphitid ammonites in central Europe: taxonomy, evolution, and extinction. Acta Palaeontologica Polonica 50: 653–696.
  • Machalski, M. and Heinberg, C. 2005. Evidence for ammonite survival into the Danian (Paleogene) from the Cerithium Limestone at Stevns Klint, Denmark. Bulletin of the Geological Society of Denmark 52: 97–111.
  • Machalski, M. and Walaszczyk, I. 1987. Faunal condensation and mixing in the uppermost Maastrichtian Danian Greensand (Middle Vistula Valley, central Poland). Acta Geologica Polonica 37: 75–91.
  • MacLeod, N. 1995. Graphic correlation of new Cretaceous/Tertiary (K/T) boundary successions from Denmark, Alabama, Mexico, and the southern Indian Ocean: implications for a global sediment accumulation model. In: K.O. Mann and H.R. Lane (eds.), Graphic Correlation. SEPM Special Publication 53: 215–223.
  • MacLeod, K.G., Whitney, D.L., Huber, B.T., and Koeberl, C. 2007. Impact and extinction in remarkably complete Cretaceous–Tertiary boundary sections from Demerara Rise, tropical western North Atlantic. Bulletin of the Geological Society of America 119: 101–115. [CrossRef]
  • Mader, D. and Koeberl, C. 2009. Using instrumental neutron activation analysis for geochemical analyses of terrestrial impact structures: current analytical procedures at the University of Vienna gamma spectrometry laboratory. Applied Radiation and Isotopes 67: 2100–2103. [CrossRef]
  • Martín−Peinado, F.J. and Rodríguez−Tovar, F.J. 2010. Mobility of iridium in terrestrial environments: implications for the interpretation of impactrelated mass−extinctions. Geochimica et Cosmochimica Acta 74: 4531–4542. [CrossRef]
  • Martínez−Ruiz, F., Ortega−Huertas, M., and Palomo, I. 1999. Positive Eu anomaly development during diagenesis of the K/T boundary ejecta layer in the Agost section (SE Spain): implications for trace element remobilization. Terra Nova 11: 290–296. [CrossRef]
  • Molina, E., Alegret, L., Arenillas, I., Arz, J.A., Gallala, N., Grajales−Nishimura, J.M., Murillo−Muńetón, G., and Zaghbib−Turki, D. 2009. The Global Boundary Stratotype Section and Point for the base of the Danian Stage (Paleocene, Paleogene, “Tertiary”, Cenozoic): auxiliary sections and correlation. Episodes 32: 84–95.
  • Muñoz−Espadas, M.J., Martínez−Frías, J., and Lunar, R. 2003. Main geochemical signatures related to meteoritic impacts in terrestrial rocks: a review. In: C. Koeberl and F. Martinez−Ruiz (eds.), Impact Markers in the Stratigraphic Record (Impact Studies), 65–90. Springer Verlag, Berlin.
  • Officer, C.B. and Page, J. 1996. The Great Dinosaur Extinction Controversy. 209 pp. Addison−Wesley, Reading, Mass.
  • Palme, H. 2008. Platinum−group elements in cosmochemistry. Elements 4: 233–238. [CrossRef]
  • Peryt, D. 1980. Planktic foraminifera zonation of the Upper Cretaceous in the Middle Vistula valley, Poland. Palaeontologia Polonica 41: 3–101.
  • Peucker−Ehrenbrink, B. and Hannigan, R.E. 2000. Effects of black shale weathering on the mobility of rhenium and platinum group elements. Geology 28: 475–478. [CrossRef]
  • Popiel, J.S. 1977. Litologia i stratygrafia osadów najwyższego mastrychtu w okolicy Lublina i Chełma. Kwartalnik Geologiczny 21: 515–526.
  • Pożaryska, K. 1952. Zagadnienia sedymentologiczne górnego mastrychtu i danu okolic Puław. Biuletyn Państwowego Instytutu Geologicznego 81: 1–104.
  • Pożaryska, K. 1965. Foraminifera and biostratigraphy of the Danian and Montian of Poland. Palaeontologica Polonica 14: 1–150.
  • Pożaryski, W. 1951. Odwapnione utwory kredowe na północno−wschodnim przedpolu Gór Świętokrzyskich. Biuletyn Państwowego Instytutu Geologicznego 75: 1–70.
  • Premović, P.I. 2009. The conspicuous red “impact” layer of the Fish Clay at Højerup (Stevns Klint, Denmark). Geochemistry International 47: 513–521. [CrossRef]
  • Robertson, D.S., McKenna, M.C., Toon, O.B., Hope, S., and Lillegraven, J.A. 2004. Survival in the first hours of the Cenozoic. Geological Society of America Bulletin 116: 760–768. [CrossRef]
  • Rocchia, R., Boclet, D., Bonté, P., Devineau, J., Jéhanno, C., and Renard, M. 1987. Comparaison des distributions de l'iridium observées à la limite Crétacé–Tertiaire dans divers sites européens. Mémoires de la Société géologique de France 150: 95–103.
  • Rocchia, R., Boclet, D., Bonté, P., Jéhanno, C., Chen, Y., Courtillot, V., Mary, C., and Wezel, F. 1990. The Cretaceous–Tertiary boundary at Gubbio revisited: vertical extent of the Ir anomaly. Earth and Planetary Science Letters 99: 206–219. [CrossRef]
  • Sawlowicz, Z. 1993. Iridium and other platinum−group elements as geochemical markers in sedimentary environments. Palaeogeography, Palaeoclimatology, Palaeoecology 104: 253–270. [CrossRef]
  • Schmitz, B. 1985. Metal precipitation in the Cretaceous–Tertiary boundary clay at Stevns Klint, Denmark. Geochimica et Cosmochimica Acta 49: 2361–2370. [CrossRef]
  • Schmitz, B. 1988. Origin of microlayering in worldwide distributed Ir−rich marine Cretaceous/Tertiary boundary clays. Geology 16: 1068–1072. [CrossRef]
  • Schmitz, B. and Asaro, F. 1996. A six metre expanded iridium anomaly in the lowermost Danian at Nye Kløv, Denmark: the record of diffusion and reworking. GFF 118: 124–125.
  • Schmitz, B., Andersson, P., and Dahl, J. 1988. Iridium, sulfur isotopes and rare earth elements in the Cretaceous–Tertiary boundary clay at Stevns Klint, Denmark. Geochimica et Cosmochimica Acta 52: 229–236. [CrossRef]
  • Schulte, P., Alegret, L., Arenillas, I., Arz, J.A., Barton, P.J., Bown, P.R., Bralower, T.J., Christeson, G.L., Claeys, P., Cockell, C.S., Collins, G.S., Deutsch, A., Goldin, T.J., Goto, K., Grajales−Nishimura, J.M., Grieve, R.A., Gulick, S.P., Johnson, K.R., Kiessling, W., Koeberl, C., Kring, D.A., MacLeod, K.G., Matsui, T., Melosh, J., Montanari, A., Morgan, J.V., Neal, C.R., Nichols, D.J., Norris, R.D., Pierazzo, E., Ravizza, G., Rebolledo−Vieyra, M., Reimold, W.U., Robin, E., Salge, T., Speijer, R.P., Sweet, A.R., Urrutia−Fucugauchi, J., Vajda, V., Whalen, M.T., and Willumsen, P.S. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science 327: 1214–1218. [CrossRef]
  • Schuraytz, B.C., Lindstrom, D.J., Martinez, R.R., and Sharpton V.L. 1997. Distribution of iridium host−phases in Chicxulub impact melt and Cretaceous–Tertiary boundary ejecta. Meteoritics and Planetary Science 32: A117.
  • Smit, J. 1999. The global stratigraphy of the Cretaceous–Tertiary boundary impact ejecta. Annual Review of Earth and Planetary Sciences 27: 75–113. [CrossRef]
  • Surlyk, F., Damholt, T., and Bjerager, M. 2006. Stevns Klint, Denmark: uppermost Maastrichtian chalk, Cretaceous–Tertiary boundary, and lower Danian bryozoan mound complex. Bulletin of the Geological Society of Denmark 54: 1–48.
  • Tagle, R. and Berlin, J. 2008. A database of chondrite analyses including platinum group elements, Ni, Co, Au, and Cr: implications for the identification of chondritic projectiles. Meteoritics and Planetary Science 43: 541–559. [CrossRef]
  • Toon, O.B., Zahnle, K., Morrison, D., Turco, R.P., and Covey, C. 1997. Environmental perturbations caused by the impacts of asteroids and comets. Reviews of Geophysics 35: 41–78. [CrossRef]
  • Tredoux, M., de Wit, M.J., Hart, R.J., Lindsay, N.M., Verhagen, B., and Sellschop, J.P.F. 1989. Chemostratigraphy across the Cretaceous–Tertiary boundary and a critical assessment of the iridium anomaly. Journal of Geology 97: 585–605. [CrossRef]
  • Vannucci, S., Pancani, M.G., Voselli, O., and Cordossi, N. 1990. Mineralogical and geochemical features of the Cretaceous–Tertiary boundary clay in the Barrando del Gredero section (Caravaca, SE−Spain). Chemie der Erde 50: 169–202.
  • Varshal, G.M., Velyukhanova, T.K., Chkhetiya, D.N., Kholin, Y.V., Shumskaya, T.V., Tyutyunnik, O.A., Koshcheeva, I.Y., and Korochantsev, A.V. 2000. Sorption on humic acids as a basis for the mechanism of primary accumulation of gold and platinum group elements in black shales. Lithology and Mineral Resources 35: 499–600. [CrossRef]
  • Wallace, M.W., Gostin, V.A., and Keays, R.R.1990. Acraman impact ejecta and host shales: evidence for low−temperature mobilization of iridium and other platinoids. Geology 18: 132–135. [CrossRef]
  • Walliser, O.H. 1984. Pleading for a natural D/C boundary. Courier Forschungsinstitut Senckenberg 67: 241–246.
  • Wdowiak, T.J., Armendarez, L.P., Agresti, D.G., Wade, M.L., Wdowiak, S.Y., Claeys, P., and Izett, G. 2001 Presence of an iron−rich nanophase material in the upper layer of the Cretaceous–Tertiary boundary scale. Meteoritics and Planetary Science 36: 123–133. [CrossRef]
  • Ziegler, P.A. 1990. Geological Atlas of Western and Central Europe. 239 pp. Shell Internationale Petroleum Maatschappij, The Hague.
  • Note added in proof
  • Miller, K.G, Sherrell, R.M., Browning, J.V., Field, M.P., Gallagher, W., Olsson, R.K., Sugarman, P.J., Tuorto, S., and Wahyudi, H. 2010. Relationship between mass extinction and iridium across the Cretaceous–Paleogene boundary in New Jersey. Geology 38: 867–870.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-d8cfd2d8-94a1-45d1-a022-6bde91209ca1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.