PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 524 |
Tytuł artykułu

Emision and excitation spectra of drought-stressed and non-stressed maize and triticale seedling leaves

Warianty tytułu
PL
Wpływ stresu suszy na emisję i wzbudzenie fluorescencji chlorofilu w liściach siewek kukurudzy i pszenżyta
Języki publikacji
EN
Abstrakty
EN
An influence of the soil drought on changes in leaf injury index (LI), leaf water potential (Ψ), chlorophyll content (Chl), chlorophyll a fluorescence (Fv/Fm) and a leaf fluorescence excitation spectrum in the main fluorescence bands (F450, F520, F690, F740) in maize and triticale was compared. In control treatments (C) among the examined species there occurred both differences and similarities in examined physiological traits. Also in the control plants differences between maize and triticale were observed in fluorescence measurements at wavelengths of 440 and 520 nm, however for wavelengths 690 and 740 nm the differences were insignificant. Drought stress (MD, SD) caused, in the case of triticale and maize genotypes, a significant decrease of leaf water potential, chlorophyll content and photochemical efficiency and increased leaf injury index. Those changes in, LI, Ψ, Chl and Fv/Fm values were higher in seedlings subjected to severe drought (SD) and harmful effect of drought in maize was higher than in triticale. Results of measurements of invisible leaf injury (LI) indicate the existence of a dependence of membranes injuries value from the length of the applied drought, leaf age and plant species. For both species injuries of older leaves were always higher comparing younger ones. Both for maize and triticale for each day of measurement in treatments MDR and SDR seedlings showed a tendency to slightly more efficient removal of harmful impact of drought on the leaf cell membranes injuries. Distinctly higher differences between triticale and maize were observed in the measurements of blue (F450) and green fluorescence (F520). Mean values of F450 and F520 in the case maize were of about 6 and 4 times respectively, higher than for triticale. However for red (F690) and far-red (F740) differences between triticale and maize there were no significance. Moderate and severe drought (MD, SD) caused the increase in emission and excitation of leaves in F450, F520 and F690 fluorescence range. After the recovery chlorophyll fluorescence in blue, green, red and far-red range mostly attained the obtained values of the control plants. Drought stress caused significant increase in F690/F740 ratio comparing to the control. After recovery changes in F450/520, F450/690 and F690/F740 ratio mostly did no attain the obtained values of control plants, however in most cases complete return to control plants was also observed.
PL
Badano bezpośredni i następczy wpływ łagodnej i ostrej suszy glebowej na uszkodzenia liści (LI), potencjał wodny liści (Ψ), zawartość chlorofilu (Chl), sprawność fotochemiczną PS II (Fv/Fm) oraz emisję i wzbudzenie fluorescencji w zakresie niebieskim (F450), zielonym (F520), czerwonym (F690) i dalekiej czerwieni (F/740) liści siewek kukurydzy i pszenżyta. Pomiary mierzonych cech fizjologicznych siewek kontrolnych wykazały pomiędzy badanymi gatunkami podobieństwa, jak i różnice. Stres suszy powodował statystycznie istotny wzrost uszkodzeń liści oraz obniżenie zawartości chlorofilu, potencjału wodnego i fotochemicznej aktywności PS II. Obserwowane zmiany były bardziej widoczne u siewek kukurydzy, w porównaniu z pszenżytem i szczególnie u siewek poddanych działaniu ostrej suszy. Stwierdzono, że stopień uszkodzeń liści zależał od poziomu suszy i wieku liści. Znaczące różnice pomiędzy kontrolnymi siewkami kukurydzy i pszenżyta obserwowano w pomiarach niebieskiej (F450) i niebieskiej (F520) fluorescencji. U kukurydzy wartości niebieskiej i zielonej fluorescencji były odpowiednio 6 i 4 razy większe, natomiast różnice fluorescencji czerwonej (F690) i dalekiej czerwieni (F740) były niewielkie i statystycznie nieistotne. Łagodna i ostra susza glebowa powodowała wzrost fluorescencji w zakresach F450, F520 i F690 oraz duży wzrost stosunku F690/F740. Po okresie rehydratacji tkanek liści zarówno u kukurydzy obserwowano naogół całkowity powrót wartości F450/520, F450/690 i F690/F740 do wartości tych relacji u siewek kontrolnych.
Wydawca
-
Rocznik
Tom
524
Opis fizyczny
p.151-166,ref.
Twórcy
autor
  • Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland
autor
autor
autor
Bibliografia
  • Araus J. L., Amaro T., Voltas J., Nakkoul H., Nachit M. M. 1998. Chlorophyll fluorescence as a criterion for grain yield in durum wheat under Mediterranean conditions. Field Crops Res. 55: 209 - 223.
  • Arnon D. I. 1949. Copper enzymes in isolated chloroplast. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1-15.
  • Barber J., Andersson B. 1991. Light can be both good and bad for photosynthesis. Trends Biol. Sci. 17: 61 - 66.
  • Basu P. S., Sharma A., Sukumaran N. P. 1998. Changes in net photosynthetic rate and chlorophyll fluorescence in potato leaves induced by water stress. Photosynth. 35: 13 - 19.
  • Behera L. M., Choudhury N. K. 1997. Changes in the chlorophyll fluorescence characteristics of chloroplasts from intact pumpkin cotyledons, caused by organ excision and kinetin treatment. Photosynth. 34: 161 - 168.
  • Benveniste-Levkovitz P., Canaani O., Gromet-Elhanan Z., Atsmon D. 1993. Characterization of drought resistance in a wild relative of wheat, Triticum kotschyi. Photosynth. Res. 35: 149 - 158.
  • Bilger W., Johnsen T., Schreiber U. 2001. UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants. J. Exp. Bot. 52: 2007 - 2014.
  • Björkman O., Powels S. B. 1984. Inhibition of photosynthetic reaction under water stress: interaction with light level. Planta 161: 490 - 504.
  • Blum A., Ebercon A. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci. 21: 43 - 47.
  • Buschmann C., Langsdorf G., Lichtenthaler H. K. 2000. Imaging of the blue, green, and red fluorescence emission of plants: An overview. Photosynth. 38: 483 - 491.
  • Buschmann C., Lichtenthaler H. K. 1998. Principles and characteristics of multi-color fluorescence imaging of plants. J. Plant Physiol. 152: 297 - 314.
  • Briantais J., Vernotte C., Krause G., Weis E. 1986. Chlorophyll a fluorescence of higher plants: Chloroplasts and leaves, in: Light emission by plant and bacteria. Govindjee, Amesz J., Fork D. (Eds), Academic Press, New York: 539 - 583.
  • Čajánek M., Štroch M., Lachetová I., Kalina J., Špunda V. 1998. Characterisation of the photosystem II inactivation of heat-stressed barley leaves as monitored by the various parameters of chlorophyll a fluorescence and delayed fluorescence. J. Photochem. Photobiol. B: Biol. 47: 39 - 45.
  • Caldwell M. M., Robberecht R., Flint S. D. 1983. Internal filters: Prospects for UV- acclimation in higher plants. Physiol. Plant. 58: 445 - 450.
  • Cerovic Z. G., Ounis A., Cartelat A., Latouche G., Goulas Y., Meyer S., Moya I. 2002. The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environm. 25: 1663 - 1676.
  • Chaves M. M., Pereira J. S., Maroco J., Rodrigues M. L., Ricardo C. P. P., Osorio L. M., Carvalho I., Faria T., Pinheiro C. 2002. How plants cope with water stress in the field. Photosynthesis and Growth. Ann. Bot. 89: 907 - 916.
  • Cornic G., Briantais J. M. 1991. Partitioning of photosynthetic electron flow between CO₂ and O₂ reduction in a C₃ leaf (Phaceolus vulgaris L.) at different CO₂ concentrations and during drought stress. Planta 183: 178 - 184.
  • Cornic G., Masacci A. 1996. Leaf photosynthesis under drought stress, in: Photosynthesis and the Environment. Baker N. R. (Ed), Kluwer Acad. Publ. Dordrecht: 347 - 366.
  • Demmig-Adams B., Adams W. W. 1992. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 599 - 626.
  • Dib T. L., Monneveux Ph., Acevedo E., Nachit M. M. 1994. Evaluation ofproline analysis and chlorophyll fluorescence quenching measurements as drought tolerance indicators in durum wheat (Triticum turgidum L. var. durum). Euphytica 7: 65 - 73.
  • Dubey R. S. 1997. Photosynthesis in plants under stressful conditions, in: Handbook of Photosynthesis. Mohammad Pessarakli (Ed.), Marcel Dekker, Inc. New York, Basel, Hong Kong: 859 - 875.
  • Epron D. 1997. Effects of drought on photosynthesis and on the thermotolerance of photosystem II in seedlings of cedar (Cedrus atlantica and C. libani). J. Exp. Bot. 315: 1835 - 1841.
  • Epron D., Dreyer E., Aussenac G. 1993. A comparison of photosynthetic responses to water stress in seedlings from 3 oak species: Quercus petraea (Matt) Liebl., Q rubra L. and Q. Cerris L. Annu. Sci. Forest. 50: 48 - 60.
  • Epron D., Dreyer E., Breda N. 1992. Photosynthesis of oak trees (Quercus petraea Matt. Liebl.) during drought stress under field conditions: diurnal cours of net CO₂ assimilation and photochemical efficiency of photosystem II. Plant Cell Environm. 15: 809 - 820.
  • Erez M., Lannoye R. 1991. Quantification of physiological disorders in stressed plants, in: Physiology-Breeding of Winter Cereals for Stresses Mediterranean Environments. Acevedo E., Conesa A. P., Monneveux P., Srivastava J. P. (Eds), Montpellier: 414 - 433.
  • Flagella Z., Pastore D., Campanille R. G., Di Fonzo N. 1995. The quantum yield of photosynthetic electron transport evaluated by chlorophyll fluorescence is a probe of drought tolerance in durum wheat. J. Agric. Sci. 125: 325 - 329.
  • Georgieva K., Lichtenthaler H. K 1999. Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studied by means of chlorophyllfluorescence. J. Plant Physiol. 155: 416 - 423.
  • Goltsev V., Yordanov I., Tsonev T. 1994. Evaluation of relative contribution of initial and variable chlorophyll fluorescence measured at different temperatures. Photosynth. 30: 629 - 643.
  • Groom Q. J., Baker N. R. 1992. Analysis of light-induced depressions ofphotosynthesis in leaves of a wheat crop during the winter. Plant Physiol. 100: 1217 - 1223.
  • Grzesiak M. T., Grzesiak S., Skoczowski A. 2006. Changes of leaf water potential and gas exchange during and after drought in triticale and maize genotypes differing in drought tolerance. Photosynth. 4: 561 - 568.
  • Grzesiak M. T., Rzepka A., Hura T., Skoczowski A. 2007. Changes in response to drought stress of triticale and maize genotypes differing in drought tolerance. Photosynth. 45: 280 - 287.
  • Hideg E., Juhasz M., Bornman J. F., Asada K. 2002. The distribution and possible origin of blue-green fluorescence in control and stressed barley leaves. Photochem. Photobiol. Sci. 1: 934 - 941.
  • Huang B., Fry J., Wang B. 1998. Water relations and canopy characteristics of tall fescue cultivars during and after drought stress. HortScience 33: 837 - 840.
  • Jung S., Steffen K. L. 1997. Influence of photosynthetic photon flux densities before and during long-term chilling on xanthophyll cycle and chlorophyll fluorescence quenching in leaves of tomato (Lycopersicon hirsutum). Physiol. Plant. 100: 958 - 966.
  • Kicheva M. I., Tsonev T. D., Popova L. P. 1994. Stomatal and non stomatal limitations to photosynthesis in two wheat cultivars subjected to water stress. Photosynth. 30: 107 - 116.
  • Krause G. H., Weis E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. 42: 313 - 349.
  • Lang M. 1995. Studies on the blue-green and chlorophyll fluorescence of plants and their applications for fluorescence imaging of leaves. Plant Physiol. 29: 1 - 110.
  • Lang M., Lichtenthaler H. K. 1995. Changes in the blue-green and red fluorescence-emission spectra of beech leaves during the autumnal chlorophyll breakdown. J. Plant Physiol. 138: 550 - 553.
  • Lang M., Lichtenthaler H. K., Sowińska M., Summ P., Heisel F. 1994. Blue, green and red fluorescence signatures and images of tabacco leaves. Bot. Acta 107: 230 - 236.
  • Lang M., Lichtenthaler H. K., Sowińska M., Heisel F., Miehe J. A. 1996. Fluorescence imaging of water and temperature stress in plant leaves. J. Plant Physiol. 148: 613 - 621.
  • Lawlor D. W., Cornic G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environm. 25: 275 - 294.
  • Liang J., Zhang J., Wong M. 1997. Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying? Photosynth. Res. 51: 149 - 159.
  • Lichtenthaler H. K. 1988. In vivo chlorophyll fluorescence as a tool for stress detection in plants, in: Applications of Chlorophyll Fluorescence. Lichtenthaler H. K. (Ed), Kluwer Acad. Publ. Dordrecht: 129 - 142.
  • Lichtenthaler H. K. 1992. The Kautsky Effect: 60 years of chlorophyll fluorescence induction kinetics. Photosynth. 27: 45 - 55.
  • Lichtenthaler H. K. 1996. Vegetation stress: an introduction to the stress concept in plants. J. Plant Physiol. 148: 4 - 14.
  • Lichtenthaler H. K., Buschmann C., Knapp M. 2005. How to correctly the different chlorophyll fluorescence parameters and the chlorophyll decrease ratio RFd of leaves with the PAM fluorometer. Photosynth. 43: 379 - 393.
  • Lichtenthaler H. K., Lang M., Sowińska M., Heisel F., Miehé J.A. 1996. Detection of vegetation stress via a new high resolution fluorescence imaging system. J. Plant Physiol. 148: 599-612.
  • Lichtenthaler HK., Schweiger J. 1998. Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. J. Plant Physiol. 152: 272 - 282.
  • Lu C., Zhang J. 1998. Effects of water stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants. Aust. J. Plant Physiol. 25: 883 - 892.
  • Matorin D. N., Ortoidze T. V., Nixolaev G. M., Veneditov P. S., Rubin A. B. 1982. Effects of dehydration on electron transport activity in chloroplasts. Photosynth. 16: 226 - 233.
  • Medrano H., Escalona J. M., Bota J., Gulias J., Flexas J. 2002. Regulation of photosynthesis of C₃ plants in response to progressive drought: stomatal conductance as a reference parameter. Ann. Bot. 89: 895 - 905.
  • Meyer S., Cartelat A., Moya I., Cerovic Z. G. 2003. UV-induced blue-green and far-red fluorescence a long wheat leaves: a potential signature of leaf ageing. J. Exp. Botany 54: 757 - 769.
  • Morales F., Cartelat A., Álvarez-Fernández A., Moya I., Cerovic Z. G. 2005. Time-resolved spectral studies of blue-green fluorescence of artichoke (Cynara cardunculus L. Var. Scolymus) leaves: identification of chlorogenic acid as one of the major fluorophores and age-mediated changes. J. Agric. Food Chem. 53: 9668 - 9678.
  • Morales F., Cerovic Z. C., Moya I. 1994. Characterization of blue-green fluorescence in the mesophyll of sugar beet (Beta vulgaris L.) leaves affected by iron deficiency. Plant Physiol. 106: 127 - 133.
  • Muller J. E., Whitsitt M. S. 1996. Plant cellular response to water deficit. Plant Growth Regul. 20: 41 - 46.
  • Ourcival J. M., Methy M., Burgess R. 1992. Chlorophyll fluorescence analysis of genotypic variability of drought stress response of white clover (Trifolium repens) and perennial rye (Lolium perenne). Can. J. Bot. 70: 1556 -1562.
  • Schmitz-Hoerner R., Weissenbock G. 2003. Contribution of phenolic compounds to the UV-B screening capacity of developing barley primary leaves in relation to DNA damage and repair under elevated UV-B levels. Phytochem. 64: 243 - 55.
  • Schreiber U., Bigler W. 1987. Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements, in: Plant Response to Stress. Tenhunen J. D., Catarino F. M., Lange O. L., Oechel C. (Eds) Springer-Verlag, Berlin: 27 - 53.
  • Schweiger J., Lang M., Lichtenthaler H. K. 1996. Differences in fluorescence excitation spectra of leaves between stressed and non-stressed plants. J. Plant Physiol. 148: 536 - 547.
  • Šesták Z., Šiffel P. 1997. Leaf-age related differences in chlorophyll fluorescence. Photosynth. 33: 347 - 369.
  • Sharma P. K., Anand P., Sankhalkar S., Shetye R. 1998. Photochemical and biochemical changes in wheat seedlings exposed to supplementary ultraviolet - B radiation. Plant Sci. 132: 21 - 30.
  • Stober F., Lichtenthaler H. K. 1998. Changes of the laser-induced blue, green and red fluorescence signatures during greening of etiolated leaves of wheat. J. Plant Physiol. 140: 673 - 680.
  • Yordanov I., Tsonev T., Goltsev V., Kruleva L., Velikova V. 1997. Interactive effect of water deficit and high temperature on photosynthesis of sunflower and maize plants. 1. Changes in parameters of chlorophyll fluorescence induction kinetics and fluorescence quenching. Photosynth. 33: 391 - 402.
  • van Rensburg L., Krüger G. H. J. 1993. Differential inhibition of photosynthesis (in vivo and in vitro), and changes in chlorophyll a fluorescence induction kinetics of four tobacco cultivars under drought stress. J. Plant Physiol. 141: 357 - 365.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.dl-catalog-d523f580-b118-477c-8ef1-296292f4e1bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.