PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 58 | 2 |
Tytuł artykułu

Small-scale effect of habitat heterogeneity on invertebrate assemblages in sandy grasslands (Hungarian Great Plain)

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerous environmental factors are confirmed to have significant influence on the habitat choice of invertebrates and thus on the assemblage structure. In dry, sandy grasslands the vegetation cover and height are assumed to be the most important factors in shaping the distribution of spiders and true bugs. The present study was carried out at a natural sand dune area in the Kiskunság region of the Hungarian Great Plain. Two adjacent sand dunes and the dune valley between them were sampled using a transect consisting of pitfall traps. The traps were arranged in 4 parallel transects, running from the sand dune top through the dune valley to the adjacent sand dune. Each row consisted of 40 traps, three meters apart. The effect of microhabitat parameters on the species richness and abundance of invertebrate assemblages were tested with linear regressions with forward selection procedure. A total number of 1447 spider and 1580 true-bug individuals of 58 and 55 species were collected, respectively. The mean number of spider species along the transects was 10.5 ± 3.7 and 9.8 ± 3.0 for true bugs. Although our data did not show a significant effect of the plant species number on species richness and abundance of the two studied taxa along this gradient, the results of the canonical correspondence analysis and the Mantel test emphasized the importance of the total coverage and vegetation composition on the distribution of invertebrate species. The correspondence analysis and the multivariate ANOVA revealed different spider and true-bug assemblages on the two slopes (multivariate ANOVA: Araneae: F = 3.609, P <0.001, Heteroptera: F = 5.248, P <0.001), possibly due to the more dense and diverse vegetation on the north facing slope, which is presumably brought about by the different insolation and moisture conditions of the slopes.
Wydawca
-
Rocznik
Tom
58
Numer
2
Opis fizyczny
p.333-346,fig.,ref.
Twórcy
autor
  • Department of Ecology, University of Szeged, Szeged, Kozep fasor 52, H-6725 Hungary
autor
autor
Bibliografia
  • Anderson M.J. 2001 – A new method for nonparametric multivariate analysis of variance – Aust. Ecol. 26: 32–46.
  • Asteraki E.J., Hart B.J., Ings T.C., Manley W.J. 2004 – Factors influencing the plant and invertebrate diversity of arable field margins – Agric. Ecos. Environ. 102: 219–231.
  • Aviron S., Burel F., Baudry J., Schermann N. 2005 – Carabid assemblages in agricultural landscapes: impacts of habitat features, landscape context at different spatial scales and farming intensity – Agr. Ecos. Environ. 108: 205–217.
  • Báldi A. 1990 – Species richness, abundance and diversity of beetles (Coleoptera) in relation to ecological succession – Folia Entomol. Hung. 52: 17–24.
  • Báldi A., Kisbenedek T. 1997 – Orthopteran assemblages as indicators of grassland naturalness in Hungary – Agr. Ecos. Environ. 66: 121–129.
  • Bíró M., Révész A., Molnár Zs., Horváth F. 2007 – Regional habitat pattern of the Danube-Tisza interfluve in Hungary – Acta Bot. Hung. 49: 267–303.
  • Bonte D., Baert L., Maelfait, J.-P. 2002 – Spider assemblage structure and stability in a heterogeneous coastal dune system (Belgium) – J. Arach. 30: 331–343.
  • Bonte D., Criel P., Van Thournout I., Maelfait J.-P. 2003 – Regional and local variation of spider assemblages (Araneae) from coastal grey dunes along the North Sea – J. Biogeogr. 30: 901–911.
  • Bonte D., Hoffmann M., Maelfait J.-P. 2000 – Seasonal and diurnal migration patterns of the spider fauna of coastal grey dunes – Ekologia (Bratislava), 19: 5–16.
  • Bonte D., Maelfait J.-P. 2001 – Life history, habitat use and dispersal of a dune wolf spider (Pardosa monticola (Clerck, 1757) Lycosidae, Araneae) – Belgian J. Zool. 131: 145–157.
  • Bröring U., Mrzljak J., Niedringhaus R., Wiegleb G. 2005 – Soil zoology I: arthropod communities in open landscapes of former brown coal mining areas – Ecol. Engine. 24: 121–133.
  • Bröring U., Wiegleb G. 2005 – Soil zoology II: Colonization, distribution, and abundance of terrestrial Heteroptera in open landscapes of former brown coal mining areas – Ecol. Engine. 24: 135–147.
  • Brown V.K., Gibson C.W.D., Kathirithamby J. 1992 – Community organisation in leaf hoppers – Oikos, 65: 97–106.
  • Buchar J., Růžička V. 2002 – Catalogue of spiders of the Czech Republic – Peres Publishers, Praha, pp. 1–349.
  • Coyle F.A. 1981 – Effects of clearcutting on the spider community of a southern Appalachian forest – J. Arach. 9: 285–298.
  • Dennis P., Young M.R., Gordon I.J. 2002 – Distribution and abundance of small insects and arachnids in relation to structural heterogeneity of grazed, indigenous grasslands – Ecol. Entomol. 23: 253 – 264.
  • Downie I.S., Butterfield J.E.L., Coulson J.C. 1995 – Habitat preferences of sub-montane spiders in northem England – Ecography, 18: 51–61.
  • Duelli P., Obrist M.K. 1998 – In search of the best correlates for local organismal biodiversity in cultivated areas – Biodivers. Conserv. 7: 297–309.
  • Entling W., Schmidt M.H., Bacher S., Brandl R., Nentwig W. 2007 – Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche – Global Ecol. Biogeogr. 16: 440–448.
  • Frank T., Künzle U. 2006 – Effect of early succession in wildflower areas on bug assemblages (Insecta: Heteroptera) – Eur. J. Entomol. 103: 61–70.
  • Gajdos P., Toft S. 2000 – Distinctiveness of the epigeic spider communities from dune habitats on the Danish North Sea coast (In: European Arachnology, Eds: S. Toft N. Scharff), pp. 223–228.
  • Gallé R. 2008 – The effect of a naturally fragmented landscape on the spider assemblages – North-West. J. Zool. 4: 61–71.
  • Greenstone M.H. 1984 – Determinants of web spider species diversity: vegetation structural diversity vs. prey availability – Oecologia, 62: 299–304.
  • Harmath B. 1984 – Angaben zur Kenntnis der Heteropteren-Fauna von Sandsteppen-Gräser I – Folia Enomol. Hung. 45: 97–101.
  • Heikkinen M.W., MacMahon J.A. 2004 – Assemblages of spiders on models of semi-arid shrubs – J. Arach. 32: 313–323.
  • Huusela-Veistola E., Vasarainen A. 2000 – Plant succession in perennial grass strips and effects on the diversity of leafhoppers (Homoptera, Auchenorrhyncha) – Agric. Ecos. Environ. 80: 101–112.
  • Jeanneret P., Schüpbach B., Lips A., Harding J., Steiger J., Waldburger M., Bigler F., Fried P.M. 1999 – Biodiversity patterns in cultivated landscapes: modelling and mapping with GIS and multivariate statistics (In: Heterogeneity in Landscape Ecology, Eds: M.J. Maudsley, E.J.P. Marshall) – IALE Publications, UK, pp. 85–94.
  • Kajak A. 2007 – Effects of forested stripes on spider assemblages in adjacent cereal fields: dispersal activity of spiders – Pol. J. Ecol. 55: 691–704.
  • Kajak A., Oleszczuk M. 2004 – Effect of shelterbelts on adjoining cultivated fields: patrolling intensity of carabid beetles (Carabidae) and spiders (Araneae) – Pol. J. Ecol. 52: 155–172.
  • Karen M., O’Halloran J., Breen J., Giller P., Pithon J., Kelly T. 2008 – Distribution and composition of carabid beetle (Coleoptera, Carabidae) communities across the plantation forest cycle-Implications for management – For. Ecol. Manage. 256: 624–632.
  • Kemény G., Penksza K., Nagy Z. 2001 – Coenological data on temperate semidesert sandy grasslands in Hungary – Acta Bot. Hung. 43: 333–348.
  • Kotze D.J., Samways M.J. 2001 – No general edge effect for invertebrates at Afromontane forest/grassland ecotones – Biodivers. Conserv.10: 443–466.
  • Körmöczi L. 1983 – Correlations between the zonation of sandy grasslands and the physicochemical condition of their soil in Bugac – Acta Biol. Szeged. 29: 117–127.
  • Levins R. 1962 – Theory of fitness in a heterogeneous environment, I. The fitness set and adaptive function – Am. Nat. 96: 361–373.
  • Lövei G.L., Magura T., Tóthmérész B., Ködölöcz V. 2006 – The influence of matrix and edges on species richness patterns of ground beetles (Coleoptera: Carabidae) in habitat islands – Global Ecol. Biogeogr. 15: 283–289.
  • Merkens S. 2000 – Epigeic spider communities in inland dunes in the lowlands of Northern Germany (In: European Arachnology 2000, Eds: S. Toft, N. Scharff), pp. 215–222.
  • Molnár Zs., Sipos F., Vidéki R., Bíró M., Iványosi Szabó A. 2003 – Dry sand vegetation of the Kiskunság – Természet BÚVÁR Kiadó, Budapest, pp. 1–159.
  • Muff P., Kropf C., Frick H., Nentwig W., Schmidt-Entling, M. 2008 – Co-existence of divergent communities at natural boundaries: spider (Arachnida: Araneae) diversity across an alpine timberline – Insect Conserv. Divers. 2: 36–44.
  • Oksanen J., Kindt R., Legendre P., O’Hara R.B. 2006 – VEGAN: Community Ecology.
  • Package. R package ver. 1.8-3. URL http://cran.r-project.org.
  • Oxbrough A.G., Gittings T., O’Halloran J., Giller P.S., Kelly T.C. 2006 – The initial effects of afforestation on the ground-dwelling spider fauna of Irish peatlands and grasslands – Forest Ecol. Manag. 237: 478–491.
  • Pearce J.L., Venier L.A., Ecces G., Pedlar J., McKenney D. 2004 – Influence of habitat and microhabitat on epigeal spider (Araneae) assemblages in four stand types – Biodivers. Conserv. 13: 1305–1334.
  • Pétillon J.,Georges A., Canarda A., Lefeuvrec J.C., Bakkerd J.P., Ysnel, F. 2008 – Influence of abiotic factors on spider and ground beetle communities in different salt-marsh systems – Basic Appl. Ecol. 9: 743–751.
  • R Development Core Team 2007 – R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
  • Prószyński J. 2007 – A monograph of Salticidae (Araneae) of the World. URL http://www.miiz.waw.pl/salticid/main.htm.
  • Raizer J., Amaral M.E.C. 2001 – Does the structural complexity of aquatic macrophites explain the diversity of associated spider assemblages? – J. Arach. 29: 227–237.
  • Rédei D., Harmat B., Hufnagel L. 2004 – Ecology of the Acalypta species occuring in Hungary (Insecta: Heteroptera: Tingidae) (Data to the knowledge on the ground-living Heteroptera of Hungary 3.) – Appl. Ecol. Environ. Res. 2: 73–90.
  • Romero-Alcaraz E., Avila J.M. 2000 – Landscape heterogeneity in relation to variation in epigaeic beetle diversity of a Mediterranean ecosystem. Implications for conservation – Biodivers. Conserv. 9: 985–1005.
  • Samu F., Sunderland K.D., Szinetár Cs. 1999 – Scale-dependent dispersal and distribution patterns of spiders in agricultural systems: a review – J. Arach. 27: 325–332.
  • Sanders D., Nickel H., Grützner T., Platner C. 2008 – Habitat structure mediates top–down effects of spiders and ants on herbivores – Basic Appl. Ecol. 9: 152–160.
  • Schaffers A.P., Raemakers I.P., Sýkora K.V., ter Braak C.J.F. 2008 – Arthropod assemblages are best predicted by plant species composition – Ecology, 89: 782–794.
  • Schwab A., Dubois D., Fried P.M., Edwards P.J. 2002 – Estimating the biodiversity of hay meadows in north-eastern Switzerland on the basis of vegetation structure – Agric. Ecos. Environ. 93: 197–209.
  • Southwood T.R.E., Henderson P.A. 2000 – Ecological methods (third edition) – Blackwell Science, Oxford pp. 462–502.
  • Stine R.A. 1995 – Graphical interpretation of variance inflation factors – J. Amer. Stat. Ass. 49: 53–56.
  • Szinetár Cs., Eihardt J., Horváth R. 2005 – Data on the biology of Alopecosa psammophila Buchar 2001 (Araneae, Lycosidae) – J. Arach. 33:384–389.
  • Szinetár Cs., Horváth R., Eichardt J. 2004 – Chrysso nordica (Theridiidae, Araneae) found in Eastern Hungary is a new spider species for Central Europe (In: European Arachnology 2002, Eds: F. Samu, Cs. Szinetár) – Budapest, Plant Protection Institute and Berzsenyi College, pp. 303–307.
  • Szita É., Samu F., Fetykó K., Szirányi A. 2004 – Testing the origin of agrobiont spiders: spiders in agricultural and natural grassland habitats of the Körös-Maros National Park, Hungary (In: European Arachnology 2002, Eds: F. Samu, Cs. Szinetár) – Budapest, Plant Protection Institute and Berzsenyi College, pp. 319–326.
  • Szita É., Samu F., Szinetár Cs., Dudás G., Botos E., Horváth R., Szalkovszki O. 2006 – New data on the occurrence of Gnaphosa rufula (L. Koch, 1866) and Gnaphosa mongolica – Acta Zool. Bulg. Suppl. 1: 329–334.
  • Tews J., Brose U., Grimm V., Tielbörger K., Wichmann M.C., Schwager M., Jeltsch F. 2004 – Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures – J. Biogeogr.31: 79–92.
  • Török K., Halassy M., Szabó R. 2003 – Restoration strategy for endemic grasslands in a low productive region of Hungary (In: Proceedings of the VIIth International Rangelands Congress, Eds: Allsopp), pp. 1132–1138.
  • Urák I., Samu F. 2008 – Contribution to the spider fauna of the Mohoş peat bog. from Transylvania, with some new data for Romania – North-West. J. Zool. 4: 50–60.
  • Vásárhelyi T. 1978 – Heteroptera V. (In: Fauna Hungariae, Eds: Z. Kaszab) – Akadémiai Kiadó, Budapest, pp. 1–76.
  • Ziesche T.M., Roth M. 2008 – Influence of environmental parameters on small-scale distribution of soil-dwelling spiders in forests: What makes the difference, tree species or microhabitat? – For. Ecol. Manage. 255: 738–752.
  • Zurbrügg C., Thomas F. 2006 – Factors Influencing Bug Diversity (Insecta: Heteroptera) in Semi-Natural Habitats – Biodivers. Conserv. 15: 275–294.
  • Ysnel F., Canard A. 2000 – Spider biodiversity in connection with the vegetation structure and the foliage orientation of hedges – J. Arach. 28: 107–114.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.dl-catalog-d17d7469-c069-413c-9a48-5939b5983591
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.