PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 524 |
Tytuł artykułu

Intensity of lipid peroxidation in the seedlings of Arabidopsis thaliana under the influence of prolonged water stress

Autorzy
Warianty tytułu
PL
Intensywność peroksydacji lipidów w siewkach Arabidopsis thaliana w warunkach długotrwałego stresu wodnego
Języki publikacji
EN
Abstrakty
EN
This study presents the data concerning the intensity of lipid peroxidation in seedlings of Arabidopsis thaliana, which were grown under the prolonged water stress on the agarized sterile medium. Growth parameters, such as length of the main root and fresh matter were measured. The seedlings of A. thaliana subjected to water deficit exhibited a decrease in the growth of the main root and fresh weight in comparison to the control plants. Since peroxidation processes due to the concentration of malonic dialdehyde and the level of chemiluminescence of plant homogenate decreased at the end of the experiment, it was concluded that plants were able to adapt to water stress conditions.
PL
W pracy badano natężenie peroksydacji lipidów w siewkach Arabidopsis thaliana w warunkach długotrwałego stresu wodnego. Mierzono takie parametry wzrostu roślin jak długość głównego korzenia i świeżą masę roślin. U siewek Arabidopsis thaliana w warunkach stresu wodnego zaobserwowano zahamowanie wzrostu korzeni i spadek świeżej masy siewek. Ponadto zanotowano obniżenie poziomu aldehydu malonowego, jak również intensywności che- miluminescencji pod koniec eksperymentu, co wskazuje na zmniejszenie natężenia peroksydacji lipidów i możliwość adaptacji roślin do warunków stresu wodnego.
Wydawca
-
Rocznik
Tom
524
Opis fizyczny
p.143-150,fig.,ref.
Twórcy
  • Institute of Botany, National Academy of Sciences of Ukraine, Terestshenkiwska Str. 2, 01601 Kiev, Ukraine
Bibliografia
  • Bartels D., Salamini F. 2001. Desiccation tolerance in the resurrection plant Craterostigma plantagineum: a contribution to the study of drought tolerance at the molecular level. Plant Physiol. 127: 1 - 8.
  • Creelman R. A., Mason H. S., Bensen R. J., Boyer J. S., Mullet J. E. 1990. Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in soybean seedlings. Analysis of growth, sugar accumulation and gene expression. Plant Physiol. 92: 205 - 214.
  • Dhindsa R. S., Matowe W. 1981. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J. Exp. Bot. 32: 79 - 91.
  • Franca M. ., Panek A. D., Eleutherio E. C. 2007. Oxidative stress and its effects during dehydration. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 146: 621 - 631.
  • Gingrich J. R., Russell M. B. 1956. Effect of soil moisture tension and oxygen concentration on the growth of corn roots. Agronomy J. 48: 517 - 520.
  • Kasuga M., Liu Q., Setsuko M., Yamaguchi-Shinozaki K., Shinozaki K. 1999. Improving Plant drought, salt and freezing tolerance by gene transfer of a single stressinducible transcription factor. Nature Biotechnology 17: 287 - 291.
  • Materechera S. A., Dexter A. R., Aslton A. M., Kirby J. M. 1992. Growth of seedling roots in response to external osmotic stress by polyethylene glycol 20 000. Plant and Soil 143: 85 - 91.
  • Mirreh H. F., Ketcheson J. W. 1973. Influence of soil water matric potential and resistance to penetration on corn root elongation. Canadian J. Soil Sci. 53: 383 - 388.
  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Sci. 7: 405 - 410.
  • Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473 - 497.
  • Nguyen A., Lamant A 1989. Variation in growth and osmotic regulation of roots of water-stressed maritime pine (Pinus pinaster Ait.) provenances. Tree Physiology 5: 123 - 133.
  • Nyzhnyk T. P., Grygoryuk I. P., Mykhalska L. M. 2004. The intensity of lipid peroxidation and enzymatic antioxidative activity in potato leaves under action of drought and polystimulin K. Ukrainian Biochemical J. 76: 130 - 135.
  • Roychoudhury A., Roy C., Sengupta D. N. 2007. Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep. 26: 1839 - 1859.
  • Seki M., Narusaka M., Abe H., Kasuga M., Yamaguchi-Shinozaki K., Carninci P., Hayashizaki Y., Shinozaki K. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA Microarray. Plant Cell 13: 61-72.
  • Seki M., Narusaka M., Ishida J., Nanjo T., Fujita M., Oono Y., Kamiya A., Nakajima M., Enju A., Sakurai T., Satou M., Akiyama K., Taji T., Yamaguchi-Shinozaki K., Carninci P., Kawai J., Hayashizaki Y., Shinozaki K. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31: 279 - 292.
  • Shou H., Bordallo P., Wang K. 2004. Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J. Exp. Bot. 55: 1013 - 1019.
  • Söderman E., Hjellstrom M., Fahleson J., Engstrom P. 1999. The HD-Zip gene ATHB6 in Arabidopsis expressed in developing leaves, roots and carpels and up-regulated by water deficit conditions. Plant Mol. Biol. 40: 1073 - 1083.
  • Söderman E. M., Brocard I. M., Lynch T. J., Finkelstein R. R. 2000. Regulation and function of the Arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks. Plant Physiol. 124: 1752 - 1765.
  • Spollen W. G., Sharp R. E., Saab I. N., Wu Y. 1993. Regulation of cell expansion in roots and shoots at low water potentials, in: Water deficits. Smith J. A. C., Griffiths H. (Eds), Plant responses from cell to community, Oxford, BIOS: 37 - 52.
  • Triboulot M. B., Pritchard J., Tomos D. 1995. Stimulation and inhibition of pine root growth by osmotic stress. New Phytologist 130: 169 - 175.
  • Van Der Weele C. M., Spollen W. G., Sharp R. E., Baskin T. I. 2000. Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. J. Exp. Bot. 51: 1555 - 1562.
  • Zhang J. Z., Creelman R. A., Zhu J. K. 2004. From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol. 135: 1 - 7.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.dl-catalog-cb04413f-62ac-49bd-b6ec-cef560c3a036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.