PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 60 | 1 |

Tytuł artykułu

Selection and adaptation of Saccharomyces cerevisiae to increased ethanol tolerance and production

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A total of 24 yeast strains were tested for their capacity to produce ethanol, and of these, 8 were characterized by the best ethanol yields (73.1181.78%). The most active mutant Saccharomyces cerevisiae ER-A, resistant to ethanol stress, was characterized by high resistance to acidic (pH 1.0 and 2.0), oxidative (1 and 2% of H₂O₂), and high temperature (45 and 52°C) stresses. During cultivation under all stress conditions, the mutants showed a considerably increased viability ranging widely from about 1.04 to 3.94-fold in comparison with the parent strain S. cerevisiae ER. At an initial sucrose concentration of 150 g/l in basal medium A containing yeast extract and mineral salts, at 30°C and within 72 h, the most active strain, S. cerevisiae ER-A, reached an ethanol concentration of 80 g/l, ethanol productivity of 1.1 g/l/h, and an ethanol yield (% of theoretical) of 99.13. Those values were significantly higher in comparison with parent strain (ethanol concentration 71 g/l and productivity of 0,99 g/l/h). The present study seems to confirm the high effectiveness of selection of ethanol-resistant yeast strains by adaptation to high ethanol concentrations, for increased ethanol production.

Wydawca

-

Rocznik

Tom

60

Numer

1

Opis fizyczny

p.51-58,fig.,ref.

Twórcy

autor
  • Department of Industrial Microbiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
autor
autor

Bibliografia

  • Alper H., J. Moxley, E. Nevoigt, G.R. Fink and G. Stephanopoulos. 2006. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314: 1565-1568.
  • Araque E., C. Parra, M. Rodríguez, J. Freer and J. Baeza. 2008. Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microb. Technol. 43: 120-123.
  • Bearson S., B. Bearson and J.W. Foster. 1997. Acid stress responses in enterobacteria. FEMS Microbiol. Lett. 147: 173-180.
  • Brown S.W., S.G. Oliver, D.E.F. Harrison and R.C. Righelato. 1981. Ethanol inhibition of yeast growth and fermentation: Differences in the magnitude and complexity of the effect. J. Appl. Microbiol. Biotechnol. 11: 153-155.
  • Brown S.W. and S.G. Oliver. 1982. Isolation of ethanol-tolerant mutants of yeast by continuous selection. Eur. J. Appl. Microbiol. Biotechnol. 16: 119-122.
  • Da Silva F.L.H., M.I. Rodrigues and F. Maugeri. 1999. Dynamic modeling simulation and optimization of an extractive continuous alcoholic fermentation process. J. Chem. Technol. Biotechnol. 74: 176-182.
  • Dinh T.N., K. Nagahisa, T. Hirasawa, C. Furusawa and H. Shimizu. 2008. Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. PLoS ONE 3(7):e2623. doi: 10.1371/journal.pone.0002623.
  • Drici-Cachon Z., J. Guzzo, J.F. Cavin and C. Divies. 1996. Acid tolerance in Leuconostoc oenos. Isolation and characterization of an acid-resistant mutant. Appl. Microbiol. Biotechnol. 44: 785-789.
  • Fried V.A. and A. Novick. 1973. Organic solvents as probes for the structure and function of the membrane: effects of ethanol on the wild and ethanol resistant mutant of Escherichia coli K-12. J. Bacteriol. 114: 239-248.
  • Gibson B.R., S.J. Lawrence, J.P. Leclaire, C.D. Powell and K.A. Smart. 2007. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol. Rev. 31: 535-69.
  • Gonchar M.V., M.M. Maidan, H.M. Pavlishko and A. Sibirny. 2001. A new oxidase-peroxidase kit for ethanol assays in alcoholic beverages. Food Technol. Biotechnol. 39: 37-42.
  • Fiedurek J. and A. Gromada. 1997. Selection of biochemical mutants of Aspergillus niger with enhanced catalase production. Appl. Microb. Biotechnol. 47: 313-316.
  • Hirasawa T., K. Yoshikawa, Y. Nakakura, K. Nagahisa, C. Furusawa, Y. Katakura, H. Shimizu and S. Shioya. 2007. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J. Biotechnol. 131: 34-44.
  • Hughest D.B., N.J. Tudroszen and C.J. Moye. 1984. The effect of temperature on the kinetics of ethanol production by a thermo-tolerant strain of Kluyveromyces marxianus. Biotechnol. Lett. 6: 1-6.
  • Ingram L.O., N.S. Vreeland and L.C. Eaton. 1980. Alcohol tolerance in Escherichia coli: a proposed common mechanism for changes induced by ethanol. Pharmacol. Biochem. Behav. 13: 191-195.
  • Ismail A.A. and M.M. Ali. 1971. Selection of high ethanol-yielding Saccharomyces I. Ethanol tolerance and the effect of training in Saccharomycess cerevisiae Hansen. Folia Microbiol. 16: 346-369.
  • Jiménez J. and T. Benítez. 1988. Selection of ethanol-tolerant yeast hybrids in pH-regulated continuous culture. Appl. Environ. Microbiol. 54: 917-922.
  • Jones T.D., J.M. Havard and A.J. Daugulis. 1993. Ethanol production from lactose by extractive fermentation. Biotechnol. Lett. 15: 871-876.
  • Lee I.S., J. Lin, H.K. Hall, B. Bearson and J.W. Foster. 1995. The stationary-phase sigma factor sˢ (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium. Mol. Microbiol. 17: 155-167.
  • Lloyd D., S. Morrell, H.N. Carlsen, H. Degn, P.E. James and C.C. Rowlands. 1993. Effects of growth with ethanol on fermentation and membrane fluidity of Saccharomyces cerevisiae. Yeast 9: 825-833.
  • Nishiwaki A. and I.J. Dunn. 1998. Analysis of a two-stage fermentor with recycle for continuous ethanol production. Chem. Eng. Commun. 168: 207-227.
  • Ogawa Y., A. Nitta, H. Uchiyama, I. Takesh, H. Shimoi and K. Ito. 2000. Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J. Biosc. Bioeng. 90: 313-320.
  • Ortiz-Zamora O., R. Cortés-García, M. Ramírez-Lepe, J. Gómez-Rodríguez and M.G. Aguilar-Uscanga. 2008. Isolation and selection of ethanol-resistant and osmotolerant yeasts from regional agricultural sources in Mexico. J. Food. Process. Engin. 32: 775-786.
  • Remize F., J.L. Roustan, J.M. Sablayrolles, P. Barre P and S. Dequin. 1999. Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl. Environ. Microbiol. 65: 143-149.
  • Schubert C. 2006. Can biofuels finally take center stage? Nat. Biotechnol. 24: 777-784.
  • Stanley D., S. Fraser, P.J. Chambers, P. Rogers and G.A. Stanley. 2010. Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 37: 139-149.
  • Van Uden N. 1985. Ethanol toxicity and ethanol tolerance in yeasts. Ann. Rep. Ferm. Process. 8: 11-58.
  • de Vasconcelos J.N., C.E. Lopes and F.P. de Franca. 2004. Continuous ethanol production using yeast immobilized on sugar-cane stalks. Braz. J. Chem. Eng. 21: 357-365.
  • Verbelen P.J., D.P. De Schutter, F. Delvaux, K.J. Verstrepen and F.R. Delvaux. 2006. Immobilized yeast cell systems for continuous fermentation applications. Biotechnol. Lett. 28: 1515-1525.
  • Viegas C.A., M.F. Rosa, I. Sa-Correia and J.M. Novais. 1989. Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation. Appl. Environ. Microbiol. 55: 21-28.
  • Wang F.S. and H.T. Lin. 2010. Fuzzy optimization of continuous fermentations with cell recycling for ethanol production. Ind. Eng. Chem. Res. 49: 2306-2311.
  • You K.M., C.L. Rosenfield and D.C. Knipple. 2003. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl. Environ. Microbiol. 69: 1499-503.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-ca917863-8e60-4d47-a7b8-403d33608e66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.