Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 20 | 1 |
Tytuł artykułu

Amplified ribosomal DNA restriction analysis (ARDRA) as a screening method for normal and bulking activated sludge sample differentation

Warianty tytułu
Języki publikacji
In the activated sludge process, the share of filamentous bacteria is crucial for proper settlement and high sewage treatment efficiency. Disequilibrium of the microbial community may be a reason for the appearance of bulking episodes. During 19 months (August 2007-February 2009) activated sludge samples were collected and analyzed by physicochemical, microscopic, and molecular methods. Amplified ribosomal DNA restriction analysis was chosen to detect molecular changes between normal and bulking sludge samples, which may be markers, informing about disadvantageous changes in the microbial population. Quantity and length of restriction products were the basis to create dendrograms representing the phylogenetic relationship of activated sludge samples. The most suitable restriction enzymes for finding molecular differences between normal and bulking sludge were MspI and HhaI.
Słowa kluczowe
Opis fizyczny
  • Department of Biotechnology and Genetic Engineering, Medical University of Silesia, Narcyzow 1, 41-200 Sosnowiec, Poland
  • 1. EIKELBOOM D. H. The manual of microscopic activated sludge analysis. 1th ed.; Seidel-Przywecki Publishing House: Szczecin, 1999 [In Polish].
  • 2. WAGNER A. M., LOETE E. T. 16S rRNA Sequence Analysis of Bacteria Present in Foaming Activated Sludge. Syst. Appl. Microbiol. 25, (3), 434, 2002.
  • 3. MARTINS A. M. P., PAGILLA K., HEIJNEN J. J., VAN LOOSDRECHT M. C. M. Filamentous bulking sludge – a critical review. Wat. Res. 38, 793, 2004.
  • 4. DRZEWICKI A. Evaluation of fauna as bio-indicator in activated sludge process. Gas, Wat. Sanit. Eng. 10, 359, 2004 [In Polish].
  • 5. DAIMS H., TAYLOR M. W., WAGNER M. Wastewater treatment: a model system for microbial ecology. Trends Biotechnol. 24, (11), 483, 2004.
  • 6. XIE B., DAI X. C., XU Y. T. Cause and pre-alarm control of bulking and foaming by Microthrix parvicella – A case study in triple oxidation ditch at a wastewater treatment plant. J. Hazard. Mat. 143, 194, 2007.
  • 7. EIKELBOOM D. H. Filamentous organisms observed in activated sludge. Wat. Res. 9, 365, 1975.
  • 8. EIKELBOOM D. H., GEURKINK B. Filamentous microorganisms observed in industrial activated sludge plants. Wat. Sci. Tech. 46, (1-2), 535, 2002.
  • 9. BAZELI M. The influence of ferric and aluminum coagulants on dominant filamentous bacteria., 2003 [In Polish].
  • 10. ROSETTI S., TOMEI M. C., NIELSEN P. H., TANDOI V. “Microthrix parvicella”, a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge. FEMS Microbiol. Rev. 29, 49, 2005.
  • 11. SEVIOUR R. J., LIU R. J., SEVIOUR E. M., McKENZIE C. A., BLACKALL L. L., SAINT C. P. The “Nostocoida limicola” story: resolving the phylogeny of this morphotype responsible for bulking in activated sludge. Wat. Sci. Tech. 46, (1-2), 105, 2002.
  • 12. MAUKONEN J., MATTO J., WIRTANEN G., RAASKA L., MATTILA-SANDHOLM T., SAARELA M. Methodologies for the characterization of microbes in industrial environments: a review. J. Ind. Microbiol. Biotechnol. 30, 327, 2003.
  • 13. WILDERER P. A., BUNGARTZ H. J., LEMMER H., WAGNER M., KELLER J., WUERTZ S. Modern scientific methods and their potential in wastewater science and technology. Wat. Res. 36, 370, 2002.
  • 14. WAGNER M., NIELSEN P. H., LOY A., NIELSEN J. L., DAIMS H. Linking microbial community structure with function: fluorescence in situ hybridization microautoradiography and isotope arrays. Curr. Opin. Biotechnol. 17, 83, 2006.
  • 15. VANEECHOUTTE M., DE BEENHOUWER H., CLAEYS G., VERCHRAEGEN G., de ROUCK A., PAEPE N., ELAICHOUNI A., PORTAELS F. Identification of Mycobacterium Species by Using Amplified Ribosomal DNA Restriction Analysis. J. Clin. Microbiol. 31, (8), 2061, 1993.
  • 16. LIU W. T., MARSH T. L., CHENG H., PORNEY L. J. Characterization of Microbial Diversity by Determining Terminal Restriction Fragment Length Polymorphism of Genes Encoding 16S rRNA. Appl. Environ. Microbiol. 63, (11), 4516, 1997.
  • 17. KOELEMAN J. G. M., STOOF J., BIESMANS D. J., SAVELKOUL P. H. M., VANDERBROUCKE-GRAULS C. M. J. E. Comparision of Amplified Ribosomal DNA Restriction Analysis, Random Amplified Polymorphic DNA Analysis, and Amplified Fragment Length Polymorphism Fingerprinting for Identification of Acinetobacter Genomic Species and Typing of Acinetobacter baumannii. J. Clin. Microbiol. 36, (9), 2522, 1998.
  • 18. GICH F. B., AMER E., FIGUERAS J. B., ABELLA C. A., BALAGUER M. D., POCH M. Assessment of microbial community structure by amplified ribosomal DNA restriction analysis (ARDRA). Int. Microbiol. 3, 103, 2000.
  • 19. HIRAISHI A., IWASAKI M., SHINJO H. Terminal Restriction Pattern Analysis of 16S rRNA Genes for the Characterization of Bacterial Communities of Activated Sludge. J. Biosci. Bioeng. 90, (2), 148, 2000.
  • 20. PURKHOLD U., POMMERENING-ROSER A., JURETSCHKO S., SCHMID M. C., KOOPS H. P., WAGNER M. Phylogeny of All Recognized Species of Ammonia Oxidizers Based on Comparative 16S rRNA and amoA Sequence Analysis: Implication for Molecular Diversity Surveys. Appl. Environ. Microbiol. 66, (12), 5368, 2000.
  • 21. COOK A. E., MEYERS P. R. Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns. Int. J. Syst. Evol. Microbiol. 53, 1907, 2003.
  • 22. PN-75 C-04616/03
  • 23. HERMANOWICZ W., DOJLIDO J., DOŻAŃSKA W., KOZIOROWSKI B., ZERBE J. Waste and water physicochemical analysis. Warsaw: Arkady, 1999 [In Polish].
  • 24. PN-72 C-04559/02
  • 25. Scientific-Technical Workshops, Germany (WTW Wissenschaftlich-Technische Werkstatten) – BOD measurements Respiration.
  • 26. JIRKA A. M., CARTER M. J. Micro Semi-Automated Analysis of Surface and Wastewaters for Chemical Oxygen Demand. Anal. Chem. 47, (8), 1397, 1975.
  • 27. PB-04 ed. 2, 17.01.2005 (Hach Methodology, No 8039)
  • 28. PB-03 ed. 2, 21.05.2005 (Hach Methodology, No 8507)
  • 29. PN-C-04576-4
  • 30. PB-01 ed. 2 (Hach Methodology, no 8051)
  • 31. PN-ISO 9297
  • 32. MICHAŁKIEWICZ M., FISZER M. Sanitary biology. Laboratories. Poznan: Poznan University of Technology Publishing House., 2007 [In Polish].
  • 33. MOYER C. L., TIEDJE J. M., DOBBS F. C., KARL D. M. A Computer-Simulated Restriction Fragment Length Polymorphism Analysis of Bacterial Small-Subunit rRNA Genes: Efficacy of Selected Tetrameric Restriction Enzymes for Studies of Microbial Diversity in Nature. Appl. Environ. Microbiol. 62, (7), 2501, 1996.
  • 34. PETERS S., KOSCHINSKY S., SCHWIEGER F., TEBBE C. C. Succession of Microbial Communities during Hot Composting as Detected by PCR-Single-Strand-Conformation Polymorphism-Based Genetic Profiles of Small-Subunit rRNA Genes. Appl. Environ. Microbiol. 66, (3), 930, 2000.
  • 35. MARTIN-LAURENT F., PHILIPPOT L., HALLET S., CHAUSSOD R., GERMON J. C., SOULAS G., CATROUX G. DNA Extraction from Soils: Old Bias for New Microbial Diversity Analysis Methods. Appl. Environ. Microbiol. 67, (5), 2354, 2001.
  • 36. KIRK J. L., BEAUDETTE L. A., HART M., MOUTOGLIS P., KLIRONOMOS J. N., LEE H., TREVORS J. T. Methods of studying soil microbial diversity. J. Microbiol. Meth. 58, 169, 2004.
  • 37. WOJCIK-SZWEDZIŃSKA M. Filamentous bacteria population analysis in activated sludge. Environ. Protect. Eng. 6, (1), 17, 2003 [In Polish].
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.