Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 51 | 3 |
Tytuł artykułu

Importance of eps genes from Bacillus subtilis in biofilm formation and swarming

Warianty tytułu
Języki publikacji
Unicellular organisms naturally form multicellular communities, differentiate into specialized cells, and synchronize their behaviour under certain conditions. Swarming, defined as a movement of a large mass of bacteria on solid surfaces, is recognized as a preliminary step in the formation of biofilms. The main aim of this work was to study the role of a group of genes involved in exopolvsaccharide biosynthesis during pellicle formation and swarming in Bacillus subtilis strain 168. To assess the role of particular proteins encoded by the group of epsI-epsO genes that form the eps operon, we constructed a series of insertional mutants. The results obtained showed that mutations in epsJ-epsN, but not in the last gene of the eps operon (epsO), have a severe effect on pellicle formation under all tested conditions. Moreover, the inactivation of 5 out of the 6 genes analysed caused total inhibition of swarming in strain 168 (that does not produce surfactin) on LB medium. Following restoration of the sfp gene (required for production of surfactin, which is essential for swarming of the wild-type bacteria), the sfp⁺ strains defective in eps genes (except epsO) generated significantly different patterns during swarming on synthetic B medium, as compared to the parental strain 168 sfp⁺.
Opis fizyczny
  • Department of Medical Biotechnology, Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
  • Department of Medical Biotechnology, Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
  • Department of Medical Biotechnology, Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
  • Institut de Génétique et Microbiologie, CNRS 8621, Université Paris-Sud, Orsay cedex, France
  • Department of Medical Biotechnology, Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
  • Blair KM, Turner L, Winkelman JT, Berg HC, Keanis DB, 2008. A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320: 1636-1638.
  • Branda SS, González-Pastor JE, Ben-Yehuda SE, Kolter R, Losick R, 2001. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 98: 11621-11626.
  • Branda SS, González-Pastor JE, Denyn E, Ehrlich SD, Losick R, Kolter R, 2004. Genes involved in formation of structured multicellular communities by Bacillus subtilis. J Bactenol 186: 3970-3979.
  • Branda SS, Chu F, Kearns DB, Losic R, Kotler R, 2006. A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229-38.
  • Bowden MG, Kaplan HP, 1998. The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol Microbiol 30: 275-284.
  • Brown II, Häse CC, 2001. Flagellum- independent surface migration of Vibrio cholerae and Escherichia coli. J Bacteriol 183: 3784-3790.
  • Chambers SP, Prior SE, Barstow DA, Minton NP, 1988. The pMTL nic cloning vectors. I. Improv ed pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68: 139-149.
  • Chu F, Kearns DB, Branda SS, Kolter R, Losick R. 2006. Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol Microbiol 59: 1216-1228.
  • Cosby WM, Vollenbroich D, Lee OH, Zuber P, 1998. Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. J Bacteriol 180: 1438-1445.
  • Gygi D, Rahman MM, Lai HC, Carlson R, Guard-Petter J, Hughes C, 1995. A cell-surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis. Mol Microbiol 17: 1167-1175.
  • Hamon MA, Stanley DA, Britton RA, Grossman AD, Lazazzera AB 2004. Identification of AbrB-regulated genes invoked in biofilm formation by Bacillus subtilis. Mol Microbiol 52: 847-860.
  • Hamze K, Julkowska D, Autret S, Hinc K, Nagorska K, Sekowska A, et al. 2009. Identification of genes required for different stages of dendritic swarming in Bacillus subtilis, with a novel role for phrC. Microbiology 155: 398-412.
  • Harshey RM, 2003. Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57: 249-273.
  • Inoue T, Shingaki R, Hirose S, Waki K, Mori H, Fukui K, 2007. Genome-wide screening of genes required for swarming motility in Escherichia coli K-12. J Bacteriol 189: 950-957.
  • Ireton K, Rudner DZ, Siranosian KJ, Grossman AD, 1993. Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factor. Genes Dev 7: 283-294.
  • Izquierdo L, Abitiu N, Coderch N, Hita B, Merino S, Gavin R, et al. 2002. The inner-core lipopolysaccharide biosynthetic waaE gene: function and genetic distribution among some Enterobacteriaceae. Microbiology 148: 3485-3496.
  • Julkowska D, Obuchowski M, Holland IB, Seror SJ, 2004. Branched swarming patterns on a synthetic medium formed by wild-type Bacillus subtilis strain 3610: detection of different cellular morphologies and constellations of cells as the complex architecture develops. Microbiology 150: 1839-1849.
  • Julkowska D, Obuchowski M, Holland IB, Seror SJ, 2005. Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium. J Bacteriol 187: 65-76.
  • Kearns DB, Losick R, 2003. Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49: 581-590.
  • Kearns DB, Chu F, Branda SS, Kolter R, Losick R, 2005. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol 55: 739-749.
  • Kobayashi K, 2007. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. J Bacteriol 189: 4920-4931.
  • Leclère V, Marti R, Béchet M, Fickers P, Jacques P, 2006. The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol 186: 475-483.
  • Lombardía E, Rovetto AJ, Arabolaza AL, Grau RR, 2006. A LuxS-dependent cell-to-cell language regulates social behavior and development in Bacillus subtilis. J Bacteriol 188: 4442-4452.
  • Lu A, Cho K, Black WP, Duan XY, Lux R, Yang Z, et al. 2005. Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol Microbiol 55: 206-20.
  • Morikawa M, 2006. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101: 1-8.
  • Nadell CD, Xavier JB, Foster KR, 2009. The sociobiology of biofilms. FEMS Microbiol Rev 33: 206-224.
  • Nagórska K, Hinc K, Strauch MA, Obuchowski M, 2008. Influence of the sigmaB stress factor and yxaB, the gene for a putative exopolysaccharide synthase under sigmaB Control, on biofilm formation. J Bacteriol 190: 3546-3556.
  • Nakano MM, Corbell N, Besson J, Zuber P, 1992. Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol Gen Genet 232: 313-321.
  • Quadri LE, Weinreb PH, Lei M, Nakano MM, Zuber P, Walsh CT, 1998. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry 37: 1585-1595.
  • Rahman MM, Guard-Petter J, Asokan K, Hughes C, Carlson RW, 1999. The structure of the colony migration factor from pathogenic Proteus mirabilis: A capsular polysaccharide that facilitates swarming. J Biol Chem 274: 22993-22998.
  • Ren D, Bedzyk AL, Setlow P, Thomas SM, Ye RW, WoodTK, 2004. Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance. Biotechnol Bioeng 86: 344-364.
  • Shapiro JA, 1998. Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52: 81-104.
  • Sharma M, Atend SK, 2002. Swarming: A coordinated bacterial activity. Current Science 83: 707-715.
  • Toguchi A, Siano M, Burkart M, Harshey RM, 2000. Genetics of swarming motility in Salmonella enterica serovar. typhimurium: critical role for lipopolysaccharide. J Bacteriol 182: 6308-6321.
  • Vagner V, Dervyn E, Ehrlich SD, 1998. A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144: 3097-3104.
  • Vlamakis H, Aguilar C, Losick R, Kolter R, 2008. Control of cell fate by the formation of an architecturally complex bacterial communitv. Genes Dev 22: 945-953.
  • Wang Q, Fiye JG, McClelland M, Harshey RM, 2004. Gene expression patterns during swarming in Salmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes. Mol Microbiol 52: 169-187.
  • Watnick P, Kolter R, 2000. Biofilm, city of microbes. J Bacterid 182: 2675-2679.
  • Wu Y, Jiang Y, Kaiser D, Mark A, 2007. Social interactions in myxobacterial swarming. PLoS Computional Biology. 3: 2546-2558.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.