PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 51 | 3 |

Tytuł artykułu

Campylobacter protein oxidation influences epithelial cell invasion or intracellular survival as well as intestinal tract colonization in chickens

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Dsb family of redox proteins catalyzes disulfide bond formation and isomerization. Since mutations in dsb genes change the conformation and stability of many extracytoplasmic proteins, and since many virulence factors of pathogenic bacteria are extracytoplasmic, inactivation of dsb genes often results in pathogen attenuation. This study investigated the role of 2 membrane-bound oxidoreductases, DsbB and Dsbl, in the Campylobacter jejuni oxidative Dsb pathway. Campylobacter mutants, lacking DsbB or Dsbl or both, were constructed by allelic replacement and used in the human intestinal epithelial T84 cell line for the gentamicin protection assay (invasion assay) and chicken colonization experiments. In C. coli strain 23/1, the inactivation of the dsbB or dsbl gene separately did not significantly affect the colonization process. However, simultaneous disruption of both membrane-bound oxidoreductase genes significantly decreased the strain's ability to colonize chicken intestines. Moreover, C. jejuni strain 81-176 with mutated dsbB or dsbI genes showed reduced invasion/intracellular survival abilities. No cells of the double mutants (dsbB⁻ dsbI⁻) of C. jejuni 81-176 were recovered from human cells after 3 h of invasion.

Wydawca

-

Rocznik

Tom

51

Numer

3

Opis fizyczny

p.383-393,fig.,ref.

Twórcy

autor
  • Department of Bacterial Genetics, Institute of Microbiology, Biology Faculty, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
autor
  • Department of Bacterial Genetics, Institute of Microbiology, Biology Faculty, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
autor
  • Department of Bacterial Genetics, Institute of Microbiology, Biology Faculty, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
autor
  • Department of Bacterial Genetics, Institute of Microbiology, Biology Faculty, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland

Bibliografia

  • Agudo D, Mendoza MT, Castanares C, Nombela C, Rotger R, 2004. A proteomic approach to study Salmonella typhi periplasmic proteins altered by a lack of the DsbA thiol: disulfide isomerase. Proteomics 4: 355-363.
  • Bleumink-Pluym NM, Verschoor F, Gaastra W, van der Zeijst BA, Fry BN, 1999. A novel approach for the construction of a Campylobacter mutant library. Microbiology 145: 2145-2151.
  • Carrillo CD, Taboada E, Nash JH, Lanthier P, Kelly J, Lau PC, et al. 2004. Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J Biol Chem 279: 20327-20338.
  • Dutton RJ, Boyd D, Berkmen M, Beckwith J, 2008. Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. PNAS USA 105: 11933-11938.
  • Godlewska R, Dzwonek A, Mikula M, Ostrowski J, Pawłowski M, Bujnicki JM, et al. 2006. Helicobacter pylori protein oxidation influences the colonization process. Int J Med Microbiol 296: 321-324.
  • Grimsliaw JP, Stirnimann CU, Brozzo MS, Malojcic G, Grutter MG, Capitani G, et al. 2008. DsbL and DsbI form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic Escherichia coli. J Mol Biol 380: 667-680.
  • Gundogdu O, Bentley SD, Holden MT, Parkhill J, Dorrell N, Wren BW, 2007. Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics 8: 162.
  • Hendrixson DR, DiRita VJ, 2004. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol 52: 471-484.
  • Heras B, Shouldice SR, Totsika M, Scanlon MJ, Schembri MA, Martin JL, 2009. DSB proteins and bacterial pathogenicity. Nat Rev 7: 215-225.
  • Hiniker A, Bardwell JC, 2004. In vivo substrate specificity of periplasmic disulfide oxidoreductases. J Biol Chem 279: 12967-12973.
  • Holmes K, Mulholland F, Pearson BM, Pin C, McNicholl-Kennedy J, Ketley JM, et al. 2005. Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology 151: 243-257.
  • Humphrey T, O'Brien S, Madsen M, 2007. Campylobacters as zoonotic pathogens: a food production perspective Int J Food Microbiol 117: 237-257.
  • Inaba K, Murakami S, Nakagawa A, Iida H, Kinjo M, Ito K, et al. 2009. Dynamic nature of disulphide bond formation catalysts revealed by crystal structures of DsbB. EMBO J 28: 779-791.
  • Janssen R, Krogfelt KA, Cawthraw SA, van Pelt W, Wagenaar JA, Owen RJ, 2008. Host-pathogen in teractions in Campylobacter infections: the host perspective. Clin Microbiol Rev 21: 505-518.
  • Jin S, Joe A, Lynett J, Hani EK, Sherman P, Chan VL, 2001. JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol Microbiol 39: 1225-1236.
  • Kalmokoff M, Lanthier P, Tremblay TL, Foss M, Lau PC, Sanders G, et al. 2006. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bact 188: 4312-4320.
  • Karlyshev AV, Everest P, Linton D, Cawthraw S, Newell DG, Wren BW, 2004. The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology 150: 1957-1964.
  • Korlath JA, Osterholm MT, Judy LA, Forfang JC, Robinson RA, 1985. A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J Infect Dis 152: 592-596.
  • Lasica AM, Jagusztyn-Krynicka EK, 2007. The role of Dsb proteins of Gram-negative bacteria in the process of pathogenesis. FEMS Microbiol Rev 31: 626-636.
  • Linton D, Lawson AJ, Owen RJ, Stanley J, 1997. PCR detection, identification to species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples. J Clin Microbiol 35: 2568-2572.
  • Macnab RM, 2003. How bacteria assemble flagella. Annu Rev Microbiol 57: 77-100.
  • Malik-Kale P, Paiker CT, Konkel ME, 2008. Culture of Campylobacter jejuni with sodium deoxycholate induces virulence gene expression. J Bact 190: 2286-2297.
  • Masip L, Pan JL, Haldar S, Penner-Hahn JE, DeLisa MP, Georgiou G, et al. 2004. An engineered pathway for the formation of protein disulfide bonds. Science 303: 1185-1189.
  • Messens J, Collet JF, 2006. Pathways of disulfide bond formation in E. coli. Int J Biochem Cell Biol 38: 1050-1062.
  • Monteville MR. Konkel ME, 2002. Fibronectin-facilitated invasion of T84 eukaryotic cells by Campylobacter jejuni occurs preferentially at the basolateral cell surface. Infect Immun 70: 6665-6671.
  • Monteville MR, Yoon JE, Konkel ME, 2003. Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. Microbiology 149: 153-165.
  • Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basliam D, et al. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665-668.
  • Pawlowski M, Łasica AM, Jagusztyn-Krynicka EK, Bujnicki JM, 2009. AAN82231 protein from uropathogenic E. coli CFT073 is a close paralog of DsbB enzymes and does not belong to the DsbI family. Pol J Microbiol 58: 181-184.
  • Pei Z, Burucoa C, Grignon B, Baqar S, Huang XZ, Kopecko DJ, et al. 1998. Mutation in the peblA locus of Campylobacter jejuni reduces interactions with epithelial cells and intestinal colonization of mice. Infect Immun 66: 938-943.
  • Raczko AM, Bujnicki JM, Pawlowski M, Godlewska R, Lewandowska M, Jagusztyn- Krynicka EK, 2005. Characterization of new DsbB-like thiol-oxidoreductases of Campylobacter jejuni and Helicobacter pylori and classification of the DsbB family based on phylogenomic, structural and functional criteria. Microbiology 151: 219-231.
  • Sambrook J, Russel DW, 2001. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York.
  • Svensson SL, Davis LM, MacKichan JK, Allan BJ, Pajaniappan M, Thompson SA, et al. 2009. The CprS sensor kinase of the zoonotic pathogen Campylobacter jejuni influences biofilm formation and is required for optimal chick colonization. Mol Microbiol 71: 253-272.
  • Wang Y, Taylor DE, 1990. Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene 94: 23-28.
  • Watson RO, Galan JE, 2005. Signal transduction in Campylobacter jejuni-induced cytokine production. Cell Microbiol 7: 655-665.
  • Watson RO, Galan JE, 2008. Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes. PLoS Pathogens 4: el4.
  • Woodall CA, Jones MA, Barrow PA, Hinds J, Marsden GL, Kelly DJ, et al. 2005. Campylobacter jejuni gene expression in the chick cecum: evidence for adaptation to a low-oxygen environment. Infect Immun 73: 5278-5285.
  • Wyszynska A, Rączko A, Lis M, Jagusztyn- Krynicka EK, 2004. Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter. Vaccine 22: 1379-1389.
  • Young KT, Davis LM, Dirita VJ, 2007. Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev 5: 665-679.
  • Zilbauer M, Dorrell N, Wren BW, Bajaj-Elliott M, 2008. Campylobacter jejuni -mediated disease pathogenesis: an update. Trans R Soc Trop Med Hyg 102: 123-129.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-b6c539ac-7ca5-4c23-90d1-362f75f997a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.