PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 20 | 2 |

Tytuł artykułu

The influence of bacterial reduction on concentrations of sulphates in deep aquifers in river drainage basin

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Our study attempts to determine the influence of bacterial reduction on sulphate concentrations in groundwaters. A buried valley in a southeastern section of the Gwda River drainage basin was selected for fieldwork near the towns of Wysoka and Bądecz. Deep aquifers in the area are known for their high sulphate concentrations that result from pyrite oxidation by the Thiobacillus denitrificans bacteria. Isotope compositions of SO₄²⁻ ions show ³⁴S enrichment at lower sulphate concentrations, which might indicate bacterial reduction processes. Theoretical curves of SO₄²⁻ isotope composition and ion concentration change, drawn using a Rayleigh formula and the results of the determination of δ¹⁸O (SO₄²⁻) and δ³⁴S (SO₄²⁻) suggest widely varying intensities of the sulphate reduction processes. It can be estimated that bacterial reduction eliminated between 30% and in excess of 50% of the initial concentrations of SO₄²⁻ ions in individual cases.

Wydawca

-

Rocznik

Tom

20

Numer

2

Opis fizyczny

p.379-386,fig.,ref.

Twórcy

autor
  • Departament of Geology and Hydrogeology, Institute of Geography, Nicholaus Copernicus University, Gagarina 9, 87-100 Torun, Poland
autor

Bibliografia

  • 1. KOTOWSKI T., KACHNIC M. The formation of chemical composition of groundwaters from the Miocene and the Pleistocene aquifers within of the buried valley area located in the vicinity of Wysoka. Biul. Państw. Inst. Geol. 427, 47, 2007 [In Polish with English Summary].
  • 2. KOTOWSKI T. Water and sulfates isotopic compositions in deep Pleistocene aquifer within of the buried structure area located in the vicinity of Wysoka (Krajna Lakeland). [In:] Szczepański A., Kmiecik E., Żurek A., (Ed.) – Wspołczesne Problemy Hydrogeologii, Krakow-Krynica, XIII, 95, 2007 [In Polish with English Summary].
  • 3. KOTOWSKI T., BURKOWSKA A. The genesis of sulfates in deep Pleistocene aquifer at Wysoka vicinity based on isotopic and microbiologic research. Biul. Państw. Inst. Geol., 436, 273, 2009 [In Polish with English Summary].
  • 4. MIZUTANI Y., RAFTER T. A. Oxygen isotopic composition of sulphates: Part 4. Bacterial fractionation of oxygen isotopes in reduction of sulphate and in the oxidation of sulphur. New Zeland Journal of Science, 12, 60, 1969.
  • 5. KROUSE H.R. Sulphur isotopes in our environment. [In:] Fritz P., Fontes J.Ch., (Ed.) – Handbook of Environmental Isotope Geochemistry. vol. 1, The Terrestrial Environment. A., Elsevier, Amsterdam, pp. 435-471, 1980.
  • 6. KROUSE H.R., GRINIENKO V.A. (Ed.) Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment. SCOPE 43, John Wiley & Sons, Singapore, pp. 440, 1991.
  • 7. RYE R.O., BACK W., HANSHAW B.B., RIGHTMIRE C.T., PEARSON F.J. The origin and isotopic composition of dissolved sulfide in groundwater from carbonate aquifers in Florida and Texas. Geochimica et Cosmochimica Acta, 45, 1941, 1981.
  • 8. STREBEL O., BOTTCHER J., FRITZ P. Use of isotope fractionation of sulfate-sulfur and sulfate-oxygen to assess bacterial desulfurication in a sandy aquifer. J. Hydrol. 121, 155, 1990.
  • 9. BOTTRELL S.H., SMART P.L., WHITAKER F., RAISWELL R. Geochemistry and isotope systematics of sulphur in the mixing zone of Bahamian blue holes. Appl. Geochem., 6, 97, 1991.
  • 10. MASSMANN G., TICHOMIROWA M., MERZ C., PEKDEGER A. Sulfide oxidation and sulfate reduction in a shallow groundwater system (Oderbruch Aquifer, Germany). J. Hydrol., 278, 231, 2003.
  • 11. YAMANAKA M., KUMAGAI Y. Sulfur isotope constraint on the provenance of salinity in a confined aquifer system of the southwestern Nobi Plain, central Japan. J. Hydrol., 325, 35, 2006.
  • 12. YAMANAKA M., NAKANO T., TASE N. Sulfate reduction and sulfide oxidation in anoxic confined aquifers in the northeastern Osaka Basin, Japan. J. Hydrol., 335, 55, 2007.
  • 13. MASSMANN G., PEKDEGER A., MERZ C. Redox processes in the Oderbruch polder groundwater flow system in Germany. Appl. Geochem., 19, 863, 2004.
  • 14. BOTTRELL S.H., MONCASTER S.J., TELLAM J.H., LLOYD J.W., FISHER Q.J., NEWTON R.J. Controls on bacterial sulphate reduction in a dual porosity aquifer system: the Lincolnshire Limestone aquifer, England. Chem. Geol., 169, 461, 2000.
  • 15. BOTTRELL S.H., HAYES P.J., BANNON M., WILLIAMS G.M. Bacterial sulfate reduction and pyrite formation in a polluted sand aquifer. Geomicrobiol. J., 13, 75, 1995.
  • 16. SPENCE M.J., BOTTRELL S.H., THORNTON S.F., LERNER D.N. Isotopic modelling of the significance of sulphate reduction for phenol attenuation in a polluted aquifer. J. Contamin. Hydrol., 53, 285, 2001.
  • 17. SPENCE M.J., BOTTRELL S.H., THORNTON S.F., RICHNOW H.H., SPENCE K.H. Hydrochemical and isotopic effects associated with petroleum fuel biodegradation pathways in a chalk aquifer. J. Contamin. Hydrol., 79, 67, 2005.
  • 18. KOTOWSKI T. The chemical composition of waters of regional groundwater flow system within the river Gwda drainage basin. Faculty of Biology and Earth Sciences NCU, Torun. Doctoral thesis, 2008 [In Polish].
  • 19. HAŁAS S., SZAFRAN J. Improved thermal decomposition of sulphates to SO2 and mass spectrometric determination of δ34S of IAEA SO-5, IAEA SO-6 and NBS-127 sulphate standards. Rapid Commun. Mass Spectrom. 15, 1618, 2001.
  • 20. ROBERTSON W.D., SCHIFF S.L. Fractionation of sulphur isotopes during biogenic sulphate reduction below a sandy forested recharge area in south-central Canada. J. Hydrol., 158, 123, 1994.
  • 21. KROUSE H.R., MAYER B. Sulphur and oxygen isotope in sulphate. [In:] Cook P.G., Herczeg A.L., (Ed.) Environmental Tracers in Subsurface Hydrology. Kluwer Academic Publishers, Boston, pp. 195-231, 2000.
  • 22. KENDALL C., MCDONNELL J.J., (Eds.) Isotope Tracers in Catchment Hydrology. Elsevier Science B.V., Amsterdam, pp. 839, 1998.
  • 23. MIKOŁAJCZUK A. Sulphur isotope effects for chemical reactions. Raport Inst. Chem. i Tech. Jądrowej, Seria B, No. 7, 28, 1999 [In Polish].
  • 24. MAKSIAK S., MROZ W., NOSEK M. The explanation for Geological Map of Poland in 1:200,000 scale. The Szczecinek sheet. Wyd. Państw. Inst. Geol., Warszawa, 1978 [In Polish].
  • 25. LISTKOWSKA H., MAKSIAK S., NOSEK M. The explanation for Geological Map of Poland in 1:200,000 scale. The Pila sheet. Wyd. Geol., Inst. Geol., Warszawa, 1978 [In Polish].
  • 26. MCKIBBON M.A., BARNES H.L Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures. Geochimica et Cosmochimica Acta, 50, 1509, 1986.
  • 27. MONCASTER S.J., BOTTRELL S.H., TELLAM J.H., LLOYD J.W., KONHAUSER K. O. Migration and attenuation of agrochemical pollutants: insights from isotopic analysis of groundwater sulphate. Journal of Contaminant Hydrology, 43, 147, 2000.
  • 28. SPANDOWSKA S., DANIELAK K., ZIEMKOWSKI A. Methodology of bacteriological investigation underground waters and ground. Wyd. Geol., Warszawa, pp. 190, 1979 [In Polish].
  • 29. LEŚNIAK P.M. Stable isotope fractionation of nitrogen in the natural cycle – implication for the studies of groundwater pollution.). Przeg. Geol., 54, 594, 2006 [In Polish].
  • 30. ZUBER A., CIĘŻKOWSKI W., ROŻAŃSKI K., (Ed.). Stable isotope methods at hydrogeology studies – methodical handbook). Oficyna Wyd. Politech. Wrocławskiej, Wrocław, pp. 402, 2007 [In Polish].
  • 31. NIEWOLAK S., GOŁAŚ I., KOCHAŃSKA E., CHOROSZEWSKA J. Bacteria Active in Sulfur Cycle in the Underground Waters of Omulewski Aquifer in the Mazurian Lake District. Pol. J. Natur. Sc., 21, 885, 2006.
  • 32. CLARK I.D., FRITZ P. Environmental isotopes in hydrogeology. CRS Press, Boca Raton, pp. 328, 1997.
  • 33. TREMBACZOWSKI A. Sulphur and oxygen isotopes behaviour in sulphates of atmospheric groundwater system, observation and model. Nordic Hydrology, 22, 49, 1991.
  • 34. CHMIELEWSKI A.G., DEMBIŃSKI W., ZAKRZEWSKA- TRZNADEL G., MILJEVIĆ N., VAN HOOK A. Environmental studies. [In:] Zarzycki R., (Ed.) - Stable isotopes – some new fields of application. Polish Academy of Sciences, Łodź Branch, pp. 85, 2002.
  • 35. SCHUH W., BOTTRELL S., KOROM S., GALLAGHER J., PATCH J. Sources and processes affecting the distribution of dissolved sulfate in the Elk Valley aquifer in Grand Forks County, Eastern North Dakota. Water Resources Investigation No. 38, North Dakota State Water Commission, 2006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-b3cb8d81-48d9-43b1-b0b5-51f7e096c732
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.