PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 12 | 1 |

Tytuł artykułu

Divergent microclimates in artificial and natural roosts of the large-footed myotis (Myotis macropus)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The thermal environment of day roosts is considered one of the most influential factors affecting the survival, growth and reproduction of microbats. The use of torpor is a common energy saving strategy employed by microbats in temperate regions. The efficiency of entry into, and arousal from, torpor is governed by roost microclimate, primarily roost temperature. The large-footed myotis Myotis macropus roosts in both tree cavities and a man-made tunnel at Yan Yean reservoir in Victoria, Australia. We investigated the thermal properties of both roost types in comparison to available tree cavities and ambient temperature over four time periods from October 2003 to May 2005. Tree cavities and tunnel roosts remained significantly warmer at night, cooler during the day, and were more stable than ambient temperatures. In addition, roost tree cavities were significantly cooler between 10:00–13:00 h compared to available tree cavities, and there was a trend for roost tree cavities to be slightly warmer at night and slower to reach maximum temperature relative to available tree cavities during the breeding season (October–January). In contrast, there was little difference in roost and available tree cavity temperatures outside of the breeding season (April–May). Temperatures inside tunnel roosts were more stable and were significantly cooler during the afternoon compared to roost tree cavities during both the breeding and non-breeding seasons. Myotis macropus may actively trade-off the enhanced thermoregulatory benefits of warm roosts for reduced predation risk associated with the tunnel roosting environment.

Wydawca

-

Rocznik

Tom

12

Numer

1

Opis fizyczny

p.173-185,fig.,ref.

Twórcy

autor
  • Department of Zoology, The University of Melbourne, Parkville, Victoria, 3010, Australia
autor

Bibliografia

  • 1. S. J. Agosta , D. Morton , and K. M. Kuhn . 2003. Feeding ecology of the bat Eptesicus fuscus: ‘preferred’ prey abundance as one factor influencing prey selection and diet breadth. Journal of Zoology (London), 260: 169–177. Google Scholar
  • 2. E. L. P. Anthony , and T. H. Kunz . 1977. Feeding strategies of the little brown bat, Myotis lucifugus, in southern New Hampshire. Ecology, 58: 775–786. Google Scholar
  • 3. D. Audet , and M. B. Fenton . 1988. Heterothermy and the use of torpor by the bat Eptesicus fuscus (Chiroptera: Vespertilionidae): a field study. Physiological Zoology, 61: 197–204. Google Scholar
  • 4. M. D. Baker , and M. J. Lacki . 2006. Day-roosting habitat of female long-legged myotis in ponderosa pine forest. Journal of Wildlife Management, 70: 207–215. Google Scholar
  • 5. R. M. R. Barclay 1991. Population structure of temperate zone insectivorous bats in relation to foraging behaviour and energy demand. Journal of Animal Ecology, 60: 165–178. Google Scholar
  • 6. R. V. Baudinette , S. K. Churchill , K. A. Christian , J. E. Nelson , and P. J. Hudson . 2000. Energy, water balance and the roost microenvironment in three Australian cave-dwelling bats (Microchiroptera). Journal of Comparative Physiology, 170B: 439–446. Google Scholar
  • 7. G. P. Bell , G. A. Bartholomew , and K. A. Nagy . 1986. The roles of energetics, water economy, foraging behavior, and geothermal refugia in the distribution of the bat, Macrotus californicus. Journal of Comparative Physiology, 156B: 441–450. Google Scholar
  • 8. F. J. Bonaccorso , A. Arends , M. Genoud , D. Cantoni , and T. Morton . 1992. Thermal ecology of moustached and ghost-faced bats (Mormoopidae) in Venezuela. Journal of Mammalogy, 73: 365–378. Google Scholar
  • 9. J. G. Boyles 2007. Describing roosts used by forest bats: the importance of microclimate. Acta Chiropterologica, 9: 297–303. Google Scholar
  • 10. S. Campbell 2007. Ecological specialisation and conservation biology of the large-footed myotis, Myotis macropus. Ph.D. Thesis, University of Melbourne, Melbourne, 203 pp. Google Scholar
  • 11. S. Campbell 2009. So long as it's near water: variable roosting behaviour of the large-footed myotis (Myotis macropus). Australian Journal of Zoology, 57: 89–98. Google Scholar
  • 12. S. Campbell , P.-J. Guay , P. J. Mitrovski , and R. Mulder . 2009. Genetic differentiation among populations of a specialist fishing bat suggests lack of suitable habitat connectivity. Biological Conservation, 142: 2657–2664. Google Scholar
  • 13. B. J. Chruszcz , and R. M. R. Barclay . 2003. Prolonged foraging bouts of a solitary gleaning/hawking bat, Myotis evotis. Canadian Journal of Zoology, 81: 823–826. Google Scholar
  • 14. W. H. Davis , and O. B. Reite . 1967. Responses of bats from temperate regions to changes in ambient temperature. Biological Bulletin, 132: 320–328. Google Scholar
  • 15. D. K. N. Dechmann , E. K. V. Kalko , and G. Kerth . 2004. Ecology of an exceptional roost: energetic benefits could explain why the bat Lophostoma silvicolum roosts in active termite nests. Evolutionary Ecology Research, 6: 1037–1050. Google Scholar
  • 16. M. Dietz , and E. K. V. Kalko . 2006. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton's bats (Myotis daubentonii). Journal of Comparative Physiology, 176B: 223–231. Google Scholar
  • 17. P. D. Dwyer 1970. Foraging behaviour of the Australian large-footed myotis (Chiroptera). Mammalia, 34: 76–80. Google Scholar
  • 18. P. D. Dwyer , and J. A. Harris . 1972. Behavioral acclimatization to temperature by pregnant Miniopterus (Chiroptera). Physiological Zoology, 45: 14–21. Google Scholar
  • 19. F. J. Ferrara , and P. L. Leberg . 2005. Characteristics of positions selected by day-roosting bats under bridges in Louisiana. Journal of Mammalogy, 86: 729–735. Google Scholar
  • 20. F. Geiser 2004. Metabolic rate and body temperature reduction during hibernation and daily torpor. annual review of physiology, 66: 239–274. Google Scholar
  • 21. F. Geiser 2006. Energetics, thermal biology, and torpor in Australian bats. Pp. 5–22, in Functional and evolutionary ecology of bats ( A. Zubaid , G. F. McCracken , and T. H. Kunz , eds.). Oxford University Press, New York, 342 pp. Google Scholar
  • 22. F. Geiser , and M. R. Brigham . 2000. Torpor, thermal biology, and energetics in Australian long-eared bats (Nyctophilus). Journal of Comparative Physiology, 170B: 153–162. Google Scholar
  • 23. R. L. Goldingay 2009. Characteristics of tree hollows used by Australian birds and bats. Wildlife Research, 36: 394–409. Google Scholar
  • 24. L. Grinevitch , S. L. Holroyd , and R. M. R. Barclay . 1995. Sex differences in the use of daily torpor and foraging time by big brown bats (Eptesicus fuscus) during the reproductive season. Journal of Zoology (London), 235: 301–309. Google Scholar
  • 25. I. M. Hamilton , and R. M. R. Barclay . 1994. Patterns of daily torpor and day-roost selection by male and female big brown bats (Eptesicus fuscus). Canadian Journal of Zoology, 72: 744–749. Google Scholar
  • 26. C. Harbusch , and P. A. Racey . 2006. The sessile serotine: the influence of roost temperature on philopatry and reproductive phenology of Eptesicus serotinus (Schreber, 1774) (Mammalia: Chiroptera). Acta Chiropterologica, 8: 213–229. Google Scholar
  • 27. D. J. Hosken 1997. Thermal biology and metabolism of the greater long-eared bat, Nyctophilus major (Chiroptera: Vespertilionidae). Australian Journal of Zoology, 45: 145–156. Google Scholar
  • 28. D. J. Hosken , and P. C. Withers . 1997. Temperature regulation and metabolism of an australian bat, Chalinolobus gouldii (Chiroptera: Vespertilionidae) when euthermic and torpid. Journal of Comparative Physiology, 167B: 71–80. Google Scholar
  • 29. G. Jones , and J. M. V. Rayner . 1991. Flight performance, foraging tactics and echolocation in the trawling insectivorous bat Myotis adversus (Chiroptera: Vespertilionidae). Journal of Zoology (London), 225: 393–412. Google Scholar
  • 30. G. Kerth , K. Weissmann , and B. König . 2001. Day-roost selection in female bechstein's bats (Myotis bechsteinii): a field experiment to determine the influence of roost temperature. Oecologia, 126: 1–9. Google Scholar
  • 31. E. Kulzer , J. E. Nelson , J. L. McKean , and F. P. Mőthers . 1970. Untersuchungen über die Temperaturregulation australischer Fledermäuse (Microchiroptera). Zeitschrift für vergleichende Physiologie, 69: 426–451. Google Scholar
  • 32. T. H. Kunz 1974. Feeding ecology of a temperate insectivorous bat (Myotis velifer). Ecology, 55: 693–711. Google Scholar
  • 33. T. H. Kunz 1987. Post-natal growth and energetics of suckling bats. Pp. 395–420, in Recent advances in the study of bats ( M. B. Fenton , P. A. Racey , and J. M. V. Rayner , eds.). Cambridge University Press, Cambridge, 470 pp. Google Scholar
  • 34. T. H. Kunz , and W. R. Hood . 2000. Parental care and postnatal growth in the chiroptera. Pp. 405–468, in Reproductive biology of bats ( E. G. Crichton , and P. H. Krutzsch , eds.). Academic Press, San Diego, 510 pp Google Scholar
  • 35. T. H. Kunz , and L. F. Lumsden . 2003. Ecology of cavity and foliage roosting bats. Pp. 3–89, in Bat ecology ( T. H. Kunz and M. B. Fenton , eds.). The University of Chicago Press, Chicago, 779 pp. Google Scholar
  • 36. T. H. Kunz , J. O. Whitaker Jr. , and M. D. Wadanoli . 1995. Dietary energetics of the insectivorous mexican free-tailed bat (Tadarida brasiliensis) during pregnancy and lactation. Oecologia, 101: 407–415. Google Scholar
  • 37. C. L. Lausen , and R. M. R. Barclay . 2003. Thermoregulation and roost selection by reproductive female big brown bats (Eptesicus fuscus) roosting in rock crevices. Journal of Zoology (London), 260: 235–244. Google Scholar
  • 38. C. L. Lausen , and R. M. R. Barclay . 2006. Benefits of living in a building: big brown bats (Eptesicus fuscus) in rocks versus buildings. Journal of Mammalogy, 87: 362–370. Google Scholar
  • 39. B. S. Law , and M. Chidel . 2007. Bats under a hot tin roof: comparing the microclimate of eastern cave bat (Vespadelus troughtoni) roosts in a shed and cave overhangs. Australian Journal of Zoology, 55: 49–55. Google Scholar
  • 40. E. Levin , A. Barnea , Y. Yovel , and Y. Yom-Tov . 2006. Have introduced fish initiated piscivory among the long-fingered bat? Mammalian Biology, 71: 139–143. Google Scholar
  • 41. S. I. Lourenço , and J. M. Palmeirim . 2004. Influence of temperature in roost selection by Pipistrellus pygmaeus (Chiroptera): relevance for the design of bat boxes. Biological Conservation, 119: 237–243. Google Scholar
  • 42. S. R. Marquardt , and J. R. Choate . 2009. Influence of thermal environment on food habits of female cave myotis (Myotis velifer). The Southwestern Naturalist, 54: 166–175. Google Scholar
  • 43. L. P. McGuire , M. B. Fenton , and C. G. Guglielmo . 2009. Effect of age on energy storage during prehibernation swarming in little brown bats (Myotis lucifugus). Canadian Journal of Zoology, 87: 515–519. Google Scholar
  • 44. MMBW. 1988. Water supply system (map). Melbourne and Metropolitan Board of Works, Melbourne. Google Scholar
  • 45. MMBW. 1989. Water for Melbourne (brochure). Melbourne and Metropolitan Board of Works, Melbourne. Google Scholar
  • 46. J. Ortega , J. E. Maldonado , G. S. Wilkinson , and H. T. Arita . 2003. Male dominance, paternity, and relatedness in the Jamaican fruit-eating bat (Artibeus jamaicensis). Molecular Ecology, 12: 2409–2415. Google Scholar
  • 47. K. J. Park , G. Jones , and R. D. Ransome . 1999. Winter activity of a population of greater horseshoe bats (Rhinolophus ferrumequinum). Journal of Zoology (London), 248: 419–427. Google Scholar
  • 48. D. Ramp , and G. Coulson . 2002. Density dependence in foraging habitat preference of eastern grey kangaroos. Oikos, 98: 393–402. Google Scholar
  • 49. S. K. Robson 1984. Myotis adversus (Chiroptera: Vespertilionidae): Australia's fish-eating bat. Australian Mammalogy, 7: 51–52. Google Scholar
  • 50. R. C. Roverud , and M. A. Chappell . 1991. Energetic and thermoregulatory aspects of clustering behaviour in the Neotropical bat Noctilio albiventris. Physiological Zoology, 64: 1527–1541. Google Scholar
  • 51. I. Ruczyński , and W. Bogdanowicz . 2005. Roost cavity selection by Nyctalus noctula and N. leisleri (Vespertilionidae, Chiroptera) in Białowieża Primeval Forest, eastern Poland. Journal of Mammalogy, 86: 921–930. Google Scholar
  • 52. I. Ruczyński , and W. Bogdanowicz . 2008. Summer roost selection by tree-dwelling bats Nyctalus noctula and N. leisleri: a multiscale analysis. Journal of Mammalogy, 89: 942–951. Google Scholar
  • 53. J. Rydell 1989. Feeding activity of the northern bat Eptesicus nilssoni during pregnancy and lactation. Oecologia, 80: 562–565. Google Scholar
  • 54. A. Sano 2000. Postnatal growth and development of thermoregulative ability in the Japanese greater horseshoe bat, Rhinolophus ferrumequinum nippon, related to maternal care. Mammal Study, 25: 1–15. Google Scholar
  • 55. J. Sedgeley 2001a. Quality of cavity microclimate as a factor influencing selection of maternity roosts by a tree-dwelling bat, Chalinolobus tuberculatus, in New Zealand. Journal of Applied Ecology, 38: 425–438. Google Scholar
  • 56. J. Sedgeley 2001b. Winter activity in the tree-roosting lesser short-tailed bat, Mystacina tuberculata, in a cold-temperate climate in New Zealand. Acta Chiropterologica, 3: 179–195. Google Scholar
  • 57. J. Sedgeley 2006. Roost site selection by lesser short-tailed bats (Mystacina tuberculata) in mixed podocarp-hardwood forest, Whenua Hou/Codfish Island, New Zealand. New Zealand Journal of Zoology, 33: 97–111. Google Scholar
  • 58. P. G. Smith , and P. A. Racey . 2005. The itinerant Natterer: physical and thermal characteristics of summer roosts of Myotis nattereri (Mammalia: Chiroptera). Journal of Zoology (London), 266: 171–180. Google Scholar
  • 59. J. R. Speakman , and D. W. Thomas . 2003. Physiological ecology and energetics of bats. Pp. 430–492, in Bat ecology ( T. H. Kunz and M. B. Fenton , eds.). The University of Chicago Press, Chicago, 779 pp. Google Scholar
  • 60. D. W. Thomas , and J. R. Speakman . 2006. Physiological ecology. Pp. 1–4, in Functional and evolutionary ecology of bats ( A. Zubaid , G. F. McCracken , and T. H. Kunz , eds.). Oxford University Press, New York, 342 pp. Google Scholar
  • 61. C. Turbill 2006a. Roosting and thermoregulatory behaviour of male gould's long-eared bats, Nyctophilus gouldi: energetic benefits of thermally unstable tree roosts. Australian Journal of Zoology, 54: 57–60. Google Scholar
  • 62. C. Turbill 2006b. Thermoregulatory behavior of tree-roosting chocolate wattled bats (Chalinolobus morio) during summer and winter. Journal of Mammalogy, 87: 318–323. Google Scholar
  • 63. C. Turbill 2008. Winter activity of Australian tree-roosting bats: influence of temperature and climatic patters. Journal of Zoology (London), 276: 285–290. Google Scholar
  • 64. C. Turbill , and F. Geiser . 2006. Thermal physiology of pregnant and lactating female and male long-eared bats, Nyctophilus geoffroyi and N. gouldi. Journal of Comparative Physiology, 176B: 165–172. Google Scholar
  • 65. C. Turbill , and F. Geiser . 2008. Hibernation by tree-roosting bats. Journal of Comparative Physiology, 178B: 597–605. Google Scholar
  • 66. C. Turbill , K. Gerhard , and F. Geiser . 2003a. Natural use of heterothermy by a small, tree-roosting bat during summer. Physiological and Biochemical Zoology, 76: 868–876. Google Scholar
  • 67. C. Turbill , B. S. Law , and F. Geiser . 2003b. Summer torpor in a free-ranging bat from subtropical Australia. Journal of Thermal Biology, 28: 223–226. Google Scholar
  • 68. M. D. Tuttle , and D. Stevenson . 1982. Growth and survival of bats. Pp. 105–150, in Ecology of bats ( T. H. Kunz , ed.). Plenum Press, New York, 425 pp. Google Scholar
  • 69. C. J. Wilde , C. H. Knight , and P. A. Racey . 1999. Influence of torpor on milk protein composition and secretion in lactating bats. Journal of Experimental Zoology, 284: 35–41. Google Scholar
  • 70. C. K. R. Willis 2006. Daily heterothermy by temperate bats using natural roosts. Pp. 38–55, in Functional and evolutionary ecology of bats ( A. Zubaid , G. F. McCracken , and T. H. KUNZ , eds.). Oxford University Press, Oxford, 342 pp. Google Scholar
  • 71. C. K. R. Willis , J. E. Lane , E. T. Liknes , D. L. Swanson , and M. R. Brigham . 2005a. Thermal energetics of female big brown bats (Eptesicus fuscus). Canadian Journal of Zoology, 83: 871–879. Google Scholar
  • 72. C. K. R. Willis , C. Turbill , and F. Geiser . 2005b. Torpor and thermal energetics in a tiny australian vespertilionid, the little forest bat (Vespadelus vulturnus). Journal of Comparative Physiology, 175B: 479–486. Google Scholar
  • 73. C. K. R. Willis , M. R. Brigham , and F. Geiser . 2006a. Deep, prolonged torpor by pregnant, free-ranging bats. Naturwissenschaften, 93: 80–83. Google Scholar
  • 74. C. K. R. Willis , C. M. Voss , and M. R. Brigham . 2006b. Roost selection by forest-living female big brown bats (Eptesicus fuscus). Journal of Mammalogy, 87: 345–350. Google Scholar

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-b3124842-3647-4888-badd-92710e2074ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.