PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 20 | 2 |

Tytuł artykułu

Allometric models of foliage biomass in Scots pine (Pinus sylvestris L.)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Presented analyses were connected with modelling foliage biomass of Scots pine (Pinus sylvestris L.) growing in northern and western Poland. In order to realize the study, a total of 38 one-hectare experimental plots were established in commercial pine monocultures growing on sites optimal for this species at a given geographical location. A total of 114 trees aged 32-114 years were felled and their needle weight and the weight of needles and young, 1-year old twigs were measured. Since social variation in the stand could affect the fit of the model, for each social class of tree position an individual allometric equation was proposed, based on easily measurable biometric traits of trees. Analysis of stepwise backward regression was conducted in order to determine variables in these equations. It turned out that to estimate foliage biomass of predominant and dominant trees, it seems most appropriate to apply diameter at breast height and tree age. In turn, for co-dominant trees, apart from diameter at breast height and tree age, the model needs to include additionally tree height and crown length. Moreover, due to the fact that the dependence between needle weight and the weight of needles and young twigs is practically linear, prediction was conducted for the biomass of foliage with young twigs. From the practical point of view, this makes it possible to precisely determine needle biomass on the basis of the weight of needles with young, 1-year-old shoots.

Wydawca

-

Rocznik

Tom

20

Numer

2

Opis fizyczny

p.355-364,fig.,ref.

Twórcy

autor
  • Department of Forest Utilization, Poznan University of Life Sciences, Wojska Polskiego 71A, 60-625 Poznan, Poland
autor
autor

Bibliografia

  • 1. GROTE R. Foliage and branch biomass estimation of coniferous and deciduous tree species. Silva Fennica 36, (4), 779, 2002.
  • 2. ZIANIS D., MENCUCCINI M. Aboveground biomass relationships for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, Northern Greece, and generalised equations for Fagus spp Ann. For. Sci. 60, 439, 2003.
  • 3. JALKANEN A., MAKIPAA R., STAHL G., LEHTONEN A., PETERSSON H. Estimation of biomass stock of trees in Sweden: comparison of biomass equations and age-dependent biomass expansion factors. Ann. For. Sci. 62, 845, 2005.
  • 4. GOULDEN M.L., MUNGER J.W., FAN S.M., DAUBE B.C., WOFSY S.C. Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science. 271, 1576, 1996.
  • 5. HOOKER T.D., COMPTON J.E. Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol. Appl. 2, 299, 2003.
  • 6. BURGER H. Wood, Foliage biomass and Development. I: The Weymoutha pine. Mitt. Schw. Anst. Forstl. Versw. 15, 243, 1929.
  • 7. BURGER H. Wood, Foliage biomass and Development. VII: The Larch. Mitt. Schw. Anst. Forstl. Versw. 24, 7, 1941.
  • 8. BURGER H. Wood, Foliage biomass and Development. XIII: The Spruce in the even-aged high forest. Mitt. Schw. Anst. Forstl. Versw. 29, 38, 1953.
  • 9. MARKS P.L. The role of pin cherry (Prunus pensylvanica L.) in the maintenance of stability in northern hardwood ecosystems. Ecol. Monogr. 44, 73, 1974.
  • 10. MOHLER C.L., MARKS P.L., SPRUGEL D.G. Stand structure and allometry of trees during self-thinning of pure stands. J. Ecol. 66, 599, 1978.
  • 11. ALBREKTSON A. Relations between tree biomass fractions and conventional silvicultural measurements. In: Persson T. (Ed.) Structure and function of northern coniferous forest – an ecosystem study. Ecol. Bull. pp. 15-327, 1980.
  • 12. VANNINEN P., YLITALO H., SIEVANEN R., MAKAELA A. Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees. 10, 231, 1996.
  • 13. PRETZSCH H. The modeling of forest growth. Blackwell Wissenschafts-Verlag, Berlin-Wien, 2001.
  • 14. SHINOZAKI K., YODA K., HOZUMI K., KIRA T. A quantitative analysis of plant from: the pipe model theory. I. Basic analyses. Jap. J. Ecol. 14, 97, 1964.
  • 15. SHINOZAKI K., YODA K., HOZUMI K., KIRA T. A quantitative analysis of plant form: the pipe model theory. II. Further evidence of the theory and its application in forest ecology. Jap. J. Ecol. 14, 133, 1964.
  • 16. WARING R.H., SCHROEDER P.E., OREN R. Application of the pipe model theory to predict canopy leaf area. Can. J. For. Res. 12, 556, 1982.
  • 17. WHITEHEAD D., EDWARDS W.R.N., JARVISP G. Conducting sapwood area, foliage area, and permeability in mature trees of Picea sitchensis and Pinus contorta. Can. J. For. Res. 14, 940, 1984.
  • 18. ROBICHAUD R., METHVEN I.R. The applicability of the pipe model theory for type prediction of foliage biomass in trees from natural, untreated black spruce stand. Can. J. For. Res. 22, 1118, 1992.
  • 19. MAKELA A., ALBREKTSON A. An analysis of the relationship between foliage biomass and crown surface area in Pinus sylvestris in Sweden. Scand. J. For. Res. 7, 297, 1992.
  • 20. BERNINGER F., NIKINMAA E. Foliage area-sapwood area relationships of Scots pine (Pinus sylvestris L.) trees in different climates. Can. J. For. Res. 24, 2263, 1994.
  • 21. MIKŠYSA V., VARNAGIRYTE-KABASINSKIENEA I., STUPAKB I., ARMOLAITISA K., KUKKOLAC M., WOJCIK J. Above-ground biomass functions for Scots pine in Lithuania, Biomass & Bioenergy. 31, 685, 2007.
  • 22. PASTOR J., ABER J.D., MELILLO J.M. Biomass prediction using generalized allometric regressions for some northeast tree species. For. Ecol. Manage. 7, 265, 1983.
  • 23. MAKELA A., VANNINEN P. Impact size and competition on tree form and distribution of aboveground biomass in Scots Pine. Can. J. For. Res. 28, 216, 1998.
  • 24. HELMISARI H.S., MAKKONEN K., KELLOMAKI S., VALTONEN E., MALKONEN E. Below- and aboveground biomass, production and nitrogen use in Scots pine stands in eastern Finland. For. Ecol. Manage. 16, 5317, 2002.
  • 25. LEHTONEN A. Estimating foliage biomass in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies Karst Mill.) plots. Tree Physiol. 25, 803, 2005.
  • 26. MUUKKONEN P., MAKIPAA R. Biomass equations for European trees: Addendum Silva Fennica 40, (4), 763, 2006.
  • 27. LEMKE J. Tables for estimation of the weight of needles and twigs with needles of the Scots pine. Sylwan. 2, 21, 1983.
  • 28. ZIANIS D., MUUKKONEN P., MAKIPAA R., MENCUCCINI M. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs 4, 2005.
  • 29. SOCHA J., WEŻYK P. Allometric equations for estimating the foliage biomass of Scots pine. Eur. J. For. 126, 263, 2007.
  • 30. MARKLUND L.G. Biomass functions for pine, spruce and birch in Sweden. Department of Forest Survey, Swedish University of Agricultural Sciences. Umea, Sweden. Report 45, 1988.
  • 31. CIENCIALA E., CĚRNY M., TATARINOV F., APLTAUER J., EXNEROỲA Z. Biomass functions applicable to Scots pine. Trees Struct. Funct. 20, 483, 2006.
  • 32. HOFFMANN C.W., USOLTSEV V.A. Tree-crown biomass estimation in forest species of the Ural and Kazakhstan. For. Ecol. Manag. 158, 59, 2002.
  • 33. MONSERUD R.A., ONUCHIN A., CHEBAKOVA N. Needle, crown, stem, and root phytomass of Pinus silvestris stands in Russia. For. Ecol. Manag. 82, 59, 1996.
  • 34. LEMKE J. Estimation of the foliage biomass of Scots Pine. Sylwan. 6, 37, 1975.
  • 35. LEMKE J. Tables for estimation of the weight of needles and twigs with needles of the Scots pine. Sylwan. 2, 21, 1983.
  • 36. TURSKI M., BEKER C., KAZMIERCZAK K., NAJGRAKOWSKI T. Allometric equations for estimating the mass and volume of fresh assimilational apparatus of standing Scots pine (Pinus sylvestris L.) trees. For. Ecol. Manag. 255, 2678, 2008.
  • 37. KRAFT G. The components of the thinning theory, The influence of the position and light felling. Hannover, Germany: Klindworth’s, 1884.
  • 38. GROCHOWSKI J. Forest mensuration. PWRiL Warszawa, Poland, 1973.
  • 39. JAWORSKI A. Natural and ecological foundations of stand regeneration and tending, PWRiL, Warszawa, 2004.
  • 40. WROBLEWSKI L. Studies on social class structure of tree position determined according to Kraft in pine stands Fol. For. Polonica 27, 23, 1984.
  • 41. HUXLEY J.S. Problems of relative growth. MacVeagh, New York, 1932.
  • 42. REDDY V.R. Allometric relationships in field-grown soybean. Ann. Bot. 82, 125, 1998.
  • 43. JENNRICH R.I., SAMPSON P.F. Applications on stepwise regression to nonlinear estimation. Technometrix 10, 63, 1968.
  • 44. ELANDT R. Mathematical statistics in its applications in agricultural experimentation. PWN, Warszawa, 1964.
  • 45. LEMKE J., WOŹNIAK A. Estimation of 1-, 2-, 3-year foliage biomass in pines of different age class. Sylwan. 9, 25, 1992.
  • 46. LEHTONEN, A., MAKIPAA, R., HEIKKINEN, J., SIEVANEN, R., LISKI, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For. Ecol. Manage. 188, (1-3), 211, 2004.
  • 47. CURIEL YUSTE J., KONOPKA B., JANSSENS I.A., COENEN K., XIAO C.W., CEULEMANS R. Contrasting net primary productivity and carbon distribution between neighboring stands of Quercus robur and Pinus sylvestris. Tree Physiol. 25, 701, 2005.
  • 48. JELONEK T., PAZDROWSKI W., ARASIMOWICZ M., TOMCZAK A., WALKOWIAK R., SZABAN J. The applicability of the pipe model theory in trees of Scots pine (Pinus sylvestris L.) of Poland. J. For. Sci. 54, (11), 519, 2008.
  • 49. JELONEK T., PAZDROWSKI W., ARASIMOWICZ M., TOMCZAK A., SZABAN J. The effect of site quality and biological tree class on the crown productivity in Scots pine (Pinus sylvestris L.). Sylwan. 153, (5), 304, 2009

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-ae7ed1e3-8351-46e1-8d5c-c0321b258e5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.