PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 60 | 1 |

Tytuł artykułu

Production and partial characterization of high molecular weight extracellular alpha-amylase from Thermoactinomyces vulgaris isolated from Egyptian soil

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Optimizing production of α-amylase production by Thermoactinomyces vulgaris isolated from Egyptian soil was studied. The optimum incubation period, temperature and initial pH of medium for organism growth and enzyme yield were around 24 h, 55°C and 7.0, respectively. Maximum α-amylase activity was observed in a medium containing starch as carbon source. The other tested carbohydrates (cellulose, glucose, galactose, xylose, arabinose, lactose and maltose) inhibited the enzyme production. Adding tryptone as a nitrogen source exhibited a maximum activity of α-amylase. Bactopeptone and yeast extract gave also high activity comparing to the other nitrogen sources (NH₄Cl, NH₄NO₃, NaNO₃, KNO₃, CH₃CO2 NH₄). Electrophoresis profile of the produced two α-amylase isozymes indicated that the same pattern at about 135145 kDa under different conditions. The optimum pH and temperature of the enzyme activity were 8.0 and 60°C, respectively and enzyme was stable at 50°C over 6 hours. The enzyme was significantly inhibited by the addition of metal ions (Na⁺, Co²⁺ and Ca²⁺) whereas Cl⁻ seemed to act as activator. The enzyme was not affected by 0.1 mM EDTA while higher concentration (10 mM EDTA) totally inactivated the enzyme.

Wydawca

-

Rocznik

Tom

60

Numer

1

Opis fizyczny

p.65-71,fig.,ref.

Twórcy

  • Botany Department, Faculty of Science, Mansoura University (Damietta Branch), New Damietta, Egypt
autor

Bibliografia

  • Aiyer P.V.D. 2004. Effect of C: N ratio on alpha amylase production by Bacillus licheniformis SPT 27. African J. Bacteriol. 3: 519-522.
  • Asoodeh A., J. Chamanic and M. Lagzian. 2010. A novel thermostable, acidophilic α-amylase from a new thermophilic „Bacillus sp. Ferdowsicous” isolated from Ferdows hot mineral spring in Iran: Purification and biochemical characterization Int. J. Biol. Macromol. doi:10.1016/j.ijbiomac.2010.01.013
  • Behnke U., H. Ruttloff and R. Kleine. 1982. Preparation and characterization of proteases from Thermoactinomyces vulgaris. V. Investigations on autolysis and thermostability of the purified protease. Z. Allg. Mikrobiol. 22: 511-519.
  • Bhella R.S. and I. Altosaar. 1985. Purification and some properties of the extracellular α-amylase from Aspergillus awamori. Can. J. Microbiol. 31: 149.
  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254.
  • Das K., R. Doley and A.K. Mukherjee. 2004. Purification and biochemical characterization of thermostable, alkaliphilic, extracellular α-amylase from B. subtilis DM-03, a strain isolated from the traditional food of India. Biotechnol. Appl. Biochem. 40: 291-298.
  • Garcia-Gonzalez M.D., J.F. Martin, T. Vigal and P. Liras. 1991. Characterization, expression in Streptomyces lividans, and processing of the amylase of Streptomyces griseus IMRU 3570: Two different amylases are derived from the same gene by an intracellular processing mechanism. J. Bacteriol. 173: 2451-2458.
  • Gupta R., G. Paresh, H. Mohapatra, V.K. Goswami and B. Chauhan. 2003 Microbial α-amylases: a biotechnological perspective. Process Biochem. 38: 1599-1616.
  • Herbert R. A. 1992. Molecular biology and biotechnology of extremophiles. Herbert R.A. and T.J. Sharp (eds). Blackie, Glasgow and London, pp. 1-43.
  • Ito K., S. Ito, k. Ishino, A. Shimizu-Ibuka and H. Sakai. 2007. Val326 of Thermoactinomyces vulgaris R-47 amylase II modulates the preference for alpha-(1,4)- and alpha-(1,6)-glycosidic linkages. Biochimica et Biophysica Acta 1774: 443-449.
  • Kundu A.K., S. Das and T.K. Gupta. 1973. Influence of culture and nutritional conditions on the production of amylase by the submerged culture of Aspergillus oryzae. J. Ferment. Technol. 51:142-150.
  • Kuo M.J. and P.A. Hartman. 1966. Isolation of amylolytic strains of Thermoactinomyces vulgaris and production of thermophilic actinomycete amylases. J. Bacteriol. 92:723-726.
  • Lacey J. 1971. Thermoactinomyces sacchari sp. nov., a thermophilic actinomycete causing bagassosis. J. Gen. Microbiol. 66: 327-338.
  • Lacey J. and T. Cross. 1989. Genus Thermoactinomyces Tsiklinsky 1899, 501AL. pp. 2574-2585. In: Williams S.T., M.E. Sharpe and J.G. Holt (eds). Bergey's Manual of Systematic Bacteriology, vol. 4. Baltimore, Williams & Wilkins.
  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
  • Leveque E., S. Janecek, B. Haye and A. Belarbi. 2000. Thermophilic archaeal amylolytic enzymes. Enzyme Microbiol. Technol. 26: 3-14.
  • Lonsane B.K. and M.V. Ramesh (eds). 1990. Production of bacterial thermostable α-amylase by solid state fermentation: a potential tool for achieving economy in enzyme production and starch hydrolysis. pp. 1-56. In: Advances in applied microbiology, vol. 35. San Diego: California Academic Press.
  • Morkeberg R., M. Carlsen and J. Neilsen. 1995. Induction and repression of α-amylase production in batch and continuous cultures of Aspergillus oryzae. Microbiology. 141: 2449-2454.
  • Murthy P.S., M.M. Naidu and P. Srinivas. 2009. Production of α-amylase under solid-state fermentation utilizing coffee waste. J. Chem. Technol. Biotechnol. 84: 1246-1249.
  • Nielsen J., T. Borchert and G. Vriend. 2001. The determinants of α-Amylase pH-activity profiles. Protein Engineering 14: 505-512.
  • Ohtaki A., A. Iguchi, M. Mizuno, T. Tonozuka, Y. Sakano and S. Kamitori. 2003. Mutual conversion of substrate specificities of Thermoactinomyces vulgaris R-47 α-amylases TVAI and TVAII by site-directed mutagenesis. Carbohydrate Research 338: 1553-1558.
  • Palanivelu P. 2001. Analytical Biochemistry and separation Techniques. Kalamani Printers, Madurai, India.
  • Pandey A., P. Nigam, C.R. Soccol, V.Y. Soccol, D. Singh and R. Mohan. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135-152.
  • Prakash O. and N. Jaiswal. 2010. α-amylase: An ideal representative of thermostable enzymes. Appl. Biochem. Biotechnol. DOI 10.1007/s12010-009-8735-4.
  • Ryan S.M., G.F. Fitzerald and D. Sinderen. 2006. Screening and identification of starch-, amylopectin-, and pullulan-degrading activities in Bifidobacterial strains. Appl. and Environmen. Microbiol. 72: 5289-5296.
  • Shimizu M., M. Kanno, M. Tamura and M. Suckane. 1978. Purification and some properties of a novel α-amylase produced by a strain of Thermoactinomyces vulgaris. Agric. Biol. Chem. 42: 1681-1688.
  • Sun H., P. Zhao, X. Ge, Y. Xia, Z. Hao, J. Liu and M. Peng. 2010. Recent advances in microbial raw starch degrading enzymes. Appl. Biochem. Biotechnol. 160: 988-1003.
  • Tonkova A. 2006. Microbial starch converting enzymes of the α-Amylase family. In: Ray R.C. and wards O.P. (eds.), pp. 421-472, Microbial Biotechnology in Horticulture, Science Publishers, Enfield, New Hampshire, USA.
  • Vihinen M. and P. Mantsala. 1989. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol. 24: 329-418.
  • Waksman S.A. 1959. Strain specificity and production of antibiotic substances. X. characterization and classification of species within the Streptmyces griseus Group. Proc. Natl. Acad. Sci. USA 45: 1043-1047.
  • Wang J.P., A.W. Zeng, Z. Liu and X.G. Yuan. 2006. Kinetics of glucoamylase hydrolysis of corn starch. J. Chem. Techn. and Biotechn. 81: 727-729.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-a470ea17-3513-4324-a6ec-18dcc029812f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.