PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 10 | 1 |

Tytuł artykułu

Changes in the phenolic acid content during wort boiling and whirlpool

Warianty tytułu

PL
Zmiany zawartości kwasów fenolowych podczas gotowania brzeczki piwnej i klarowania w Whirlpoolu

Języki publikacji

EN

Abstrakty

EN
Background. Phenolic acids were repeatedly pointed out as powerful antioxidants. The studies in the past prove the differences in the phenolic acids content in malts and worts. In this work, the influence of wort boiling and Whirlpool separation on the phenolic acid content was studied. Material and methods. Worts were produced in the local brewery by the infusion method using pale pilsner-type barley malt. Samples were analysed at the beginning of the boil, after the boil and after Whirlpool separation (5 and 30 min). Free and total alkali extractable phenolic acids contents were analysed using HPLC-DAD. Results. The main phenolic acid in all worts was ferulic acid in the free (35.47 ±3.28- -117.51 ±4.40 mg-dm'3) as well as total alkali extractable form (193.49 ±4.84-294.72 ±2.65 mg-dm'3). With both forms no decrease was seen after boiling of wort (80 min at 100-100.5°C) followed by wort separation in the Whirlpool. Similarly, no significant changes in the free and total form of p-coumaric acid content were seen. Conclusions. It can be concluded that an elevated temperature during wort boiling and separation in Whirlpool had no significant influence on the content of phenolic acids (at least in the case of the specific mashing program applied in this brewery: equipment, enzyme preparations, mashing, time-temperature parameters etc.). The differences in the phenolic acids levels could be rather attributed to different supplies of malt used for the production.
PL
Wstęp. Kwasy fenolowe są wskazywane jako bardzo efektywne związki o charakterze przeciwutleniaczy. Badania wykonane w przeszłości wskazują na różnice w zawartościach kwasów fenolowych w słodach i brzeczkach. Celem pracy było sprawdzenie wpływu gotowania brzeczki oraz jej klarowania w separatorze Whirlpool na zawartości kwasów fenolowych. Materiał i metodyka. Brzeczki były produkowane w miejscowym browarze metodą in- fuzyjną z użyciem jasnego jęczmiennego słodu pilzneńskiego typu lager. Próbki brzeczek analizowano na początku gotowania, po gotowaniu oraz po klarowaniu w separatorze Whirlpool (po 5 and 30 min). Zawartości kwasów fenolowych wolnych oraz po alkalicznej hydrolizie (całkowite zawartości kwasów fenolowych) analizowano za pomocą HPLC-DAD. Wyniki. Kwas ferulowy był głównym kwasem fenolowym we wszystkich próbach brzeczek piwnych, zarówno w formie wolnej (35,47 ±3,28-117,51 ±4,40 mgdm'3), jak i po hydrolizie alkalicznej (193,49 ±4,84-294,72 ±2,65 mg dm'3). Ponadto, we wszystkich badanych brzeczkach wykryto duże stężenie kwasu p-kumarowego w formie zarówno wolnej, jak i związanej. Nie stwierdzono obniżenia stężenia obu wymienionych, najważniejszych ilościowo, kwasów fenolowych po gotowaniu brzeczek piwnych (80 min, 100,5°C) i klarowaniu w separatorze typu Whirlpool. Wnioski. Dowiedziono, że podwyższona temperatura w czasie gotowania brzeczki nie miała statystycznie istotnego wpływu na zawartości wolnych form głównych kwasów fenolowych (po zastosowaniu opisanego w pracy programu produkcji brzeczki - określone wyposażenie warzelni, preparaty enzymatyczne, program czasowo-temperaturowy etc.). Różnice w stężeniach kwasów fenolowych przypisano raczej użyciu słodów jęczmiennych pochodzących z różnych dostaw.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

10

Numer

1

Opis fizyczny

p.19-33,fig.,ref.

Twórcy

autor
  • Department of Biotechnology, Human Nutrition and Science of Food Commodities, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland

Bibliografia

  • Boume L.C., Rice-Evans S.C., 1998. Bioavailability of ferulic acid. Biochem. Biophys. Res. Commun. 18, 253.
  • Choudhury R., Srai K., Debnam E., Rice-Evans C.A., 1999. Urinary excretion of hydroxycinnamates and flavonoids after orał and intravenous administration. Free Rad. Biol. Med. 27,278-286.
  • Clifford M.N., Copeland E.L., Bloxsidge J.P., Mitchell L.A., 2000. Hippuric acid as a major excretion product associated with black tea consumption. Xenobiotica 50, 317-326.
  • Couteau D., McCartney A.L., Gibson, G.R., Williamson G., Faulds CB., 2001. Isolation and characterization of human colonie bacteria able to hydrolase chlorogenic acid. J. Appl. Microbiol. 90, 873-881.
  • Cuvelier M.E., Richard H., Berset C., 1992. Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship. Biosci. Biotech. Biochem. 56, 324-325.
  • Deprez S., Brezillon C., Raport S., Philippe C., Mila I., Lapierre C., Scalbert A., 2000. Polymeric proanthocyanidins are catabolized by human colonie microflora into low-molecular-weight phenolic acids. J. Nutr. 130, 2733-2738.
  • Fantozzi P., Montanari F., Gasbarrini A., Addolorato G., Simoncini M., Nardini M., Ghiselli A., Scaccini C., 1998. In vitro antioxidant capacity from wort to beer. Lebensm. Wiss-u. Technol. 31,221-227.
  • Floridi S., Montanari L., Marconi O., Fantozzi P., 2003. Determination of free phenolic acids in wort and beer by coulometric array detection. J. Agric. Food Chem. 51, 1548-1554.
  • Gerhauser C., 2005. Beer constituents as potential cancer chemopreventive agents. Eur. J. Cancer 41, 1941-1954.
  • Ghiselli A., Natella F., Guidi A., Montanari L., Fantozzi P. Scaccini C., 2000. Beer inereases plasma antioxidant capacity in humans. J. Nutr. Biochem. 11, 76-80.
  • Gorinstein S., Caspi A., Zemser M., Trakhtenberg S., 2000. Comparative contents of some phenolics in beer, red and white wines. Nutr. Res. 20, 131-139.
  • Gross M., Pfeiffer M., Martini M., Campbell D., Slavin J., Potter J., 1996. The quantitation of metabolites of quercetin flavonols in human urine. Cancer Epidemiol. Biomarkers Prev. 5, 711-720.
  • Hollman P.C., Katan M.B., 1998. Bioavailability and health effects of dietary flavonols in man. Arch. Toxicol. 20, 237-248.
  • Hughes P.S., 1997. Comparison of (+)-catechin and ferulic acid as natural antioxidants and their impact on beer flavor stability. Part I: Forced-aging. J. Am. Soc. Brew. Chem. 55, 83-89.
  • Itagaki S., Kurokawa T., Nakata C., Saito Y., Oikawa S., Kobayashi M., Hirano T., Iseki K., 2009. In vitro and in vivo antioxidant properties of ferulic acid, A comparative study with other natural oxidation inhibitors. Food Chem. 114 (2), 466-471.
  • Joshi G., Perluigi M., Sultana R., Agrippino R., Calabrese V., Butterfield D.A., 2006. In vivo protection of synaptosomes by ferulic acid ethyl ester (FAEE) from oxidative stress mediated by 2,2-azobis(2-amidino-propane)dihydrochloride (AAPH) or Fe2+ /H202: Insight into mechanisms of neuroprotection and relevance to oxidative stress-related neurodegenerative disorders. Neurochem. Int. 48 (4), 318-327.
  • Kanski J., Aksenova M., Stoyanova A., Butterfield D.A., 2002. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal celi culture Systems in vitro: structure-activity studies. J. Nutr. Biochem. 13, 273-281.
  • Liu Q., Yao H., 2007. Antioxidant activities of barley seeds extracts. Food Chem. 12, 732-737.
  • Maillard M.-N., Berset C., 1995. Evolution of antioxidant activity during kilning: role of insoluble bound phenolic acids of barley and malt. J. Agric. Food Chem. 43, 1789-1793.
  • Maillard M.N., Soum M.H., Boivin P., Berset C., 1996. Antioxidant activity of barley and malt: relationship with phenolic content. Lebensm. Wiss. Technol. 29, 238-244.
  • Nardini M., Cirillo E., Natella F., Mencarelli D., Comisso A., Scaccini C., 2002 a. Detection of bound phenolic acids: prevention by ascorbic acid and ethylenediaminetetraacetic acid of degradation of phenolic acids during alkaline hydrolysis. Food Chem. 79, 119-124.
  • Nardini M., Cirillo E., Natella F., Scaccini C., 2002 b. Absorption of phenolic acids in humans after coffee consumption. J. Agric. Food Chem. 50, 5735-5741.
  • Nardini M., D'aquino M., Tomassi G., Gentili V., Di Felice M., Scaccini C., 1995. Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydrocinnamic acid derivatives. Free Rad. Biol. Med. 19, 541-552.
  • Nardini M., Ghiselli A., 2004. Determination of free and bound phenolic acids in beer. Food Chem. 84, 137-143.
  • Nardini M., Natella F., Gentili V., Di Felice M., Scaccini C., 1997. Effect of caffeic acid dietary supplementation on the antioxidant defense system in rat: an in vivo study. Arch. Biochem. Biophys. 342(1), 157-160.
  • Nardini M., Natella F., Scaccini C., Ghiselli A., 2006. Phenolic acids from beer are absorbed and extensively metabolized in humans. J. Nutr. Biochem. 17, 14-22.
  • Olthof M.R.., Hollman P.C., Bujisman M.N., Van Amelsvoort J.M., Katan M.B., 2003. Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolised in humans. J. Nutr. 133, 1806-1814.
  • Pascoe H.M., Ames J.M., 2003. Critical stages of the brewing process for changes in antioxidant activity and levels of phenolic compounds in Ale. Am. Soc. Brew. Chem. 61, 203-209.
  • Plumb G.W., Garcia-Conesa M.T., Kroon P.A., Rhodes M., Ridley S., Williamson G., 1999. Metabolism of chlorogenic acid by human plasma, liver, intestine and gut microflora. J. Sci. Food Agric. 79, 390-392.
  • Rechner A.R., Kuhnle G., Bremner P., Hubbard G.P., 2002. The metabolic fate of dietary polyphenols in humans. Free Radie. Biol. Med. 33, 220-235.
  • Rechner A.R., Pannala A.S., Rice-Evans C.A., 2001 a. Caffeic acid derivatives in artichoke extract are metabolized to phenolic acids in vivo. Free Rad. Res. 35, 195-202.
  • Rechner A.R., Spencer J.P.E., Kuhnle G., Hahn U., Rice-Evans C.A., 2001 b. Novel biomarkers of the bioavailability and metabolism of caffeic acid derivatives in humans. Free Rad. Bio. Med. 30, 1213-1222.
  • Rondini L., Peyrat-Maillard M.N., Marsset-Baglieri A., Berset C., 2002. Sulfated ferulic acid is the main in vivo metabolite found after short-term ingestion of free ferulic acid in rats. J. Agric. Food Chem. 50, 3037-3041.
  • Saija A., Tomaino A., Trombetta D., De Pasquale A., Uccella N., Barbuzzi T., Paolino D., Bonina F., 2000. In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agents. Int. J. Pharm. 199 (1), 39-47.
  • Scalbert A., Williamson G., 2000. Dietary intake and bioavailability of polyphenols. J. Nutr. 130, 2073S-2085S.
  • Tanaka T., Kojima T., Kawamori T., Wang A., Suzui M., Okamoto K., Mori H., 1993. Inhibition of 4-nitroquinoline-l-oxide-induced rat tongue carcinogenesis by the naturally occuring plant phenolics caffeic, ellagic, chlorogenic and ferulic acids. In: Chemopreventions by plant phenolics. Oxford Univ. Press London, 1321-1325.
  • Vanbeneden N., Delvaux F., Delvaux F.R., 2006. Determination of hydroxycinnamic acids and volatile phenols in wort and beer by isocratic high-performance liquid chromatography using electrochemical detection. J. Chromatogr. A, 1136, 237-242.
  • Vanbeneden N., Gils F., Delvaux F., Delvaux F.R., 2007. Variability in the release of free and bound hydroxycinnamic acids from diverse malted barley {Hordeum vulgare L.) cultivars during wort production. J. Agric. Food Chem. 55, 11002-11010.
  • Vanbeneden N., Gils F., Delvaux F., Delvaux F.R., 2008 a. Formation of 4-vinyl and 4-ethyl derivatives from hydroxycinnamic acids: Occurrence of volatile phenolic flavour compounds in beer and distribution of Padl-activity among brewing yeasts. Food Chem. 107, 221-230.
  • Vanbeneden N., Van Roey T., Willems F., Delvaux F., Delvaux F.R., 2008 b. Release of phenolic flavour precursors during wort production: Influence of process parameters and grist composition on ferulic acid release during brewing. Food Chem. 111, 83-91.
  • Walters M.T., Heasman A.P., Hughes P.S., 1997. Comparison of (-t-)-catechin and ferulic acid as natural antioxidants and their impact on beer flavor stability. Part II: extended storage trials. J. Am. Soc. Brew. Chem. 55, 91-98.
  • Yan J.-J., Cho J.-Y., Kim H.-S., Kim K.-L., Jung J.-S., Huh S.-O., Suh H.-W., Kim Y.-H., Song D.-K., 2001. Protection against (J-amyloid peptide tixicity in vivo with long-term administration offerulic acid. Brit. J. Pharmacol. 133, 89-96.
  • Young J., Wahle K.W.J., Boyle S.P., 2008. Cytoprotective effects of phenolic antioxidants and essential fatty acids in human blood monocyte and neuroblastoma celi lines: Surrogates for neurological damage in vivo., Prostag. Leukotr. Ess. 78, 145-159.

Uwagi

PL
Rekord w opracowaniu.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-981fa454-b482-4939-8a56-7bb6df0c07a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.