PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 16 | 1 |

Tytuł artykułu

Endothelial microparticle formation in moderate concentrations of homocysteine and methionine in vitro

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Microparticles (MPs) are small membrane vesicles released by stimulated or apoptotic cells, including the endothelium. Hyperhomocysteinemia (HHcy) is a blood disorder characterized by an increase in the plasma concentrations of total homocysteine (Hcy). The plasma Hcy level is determined by environmental factors (dietary habits, i.e. the intake of folic acid, FA) and genetic factors (N 5,N 10-methylenetetrahydro-folate reductase, MTHFR, polymorphism 677C>T). To evaluate whether moderate Hcy concentrations induce endothelial MP formation, the role of FA supplementation and the influence of MTHFR polymorphism were analysed. Human umbilical vein endothelial cells (HUVEC) were treated in vitro with 50 μM of Hcy and methionine (Met). The MP number and apoptotic phenotype were analyzed using flow cytometry. Increasing doses of FA (5, 15 and 50 μM) were used to reduce the HHcy effect. The MTHFR 677C>T polymorphism was determined. HUVEC stimulated by Hcy produced significantly more MPs than HUVEC under the control conditions: 3,551 ± 620 vs 2,270 ± 657 kMP (p = 0.02). Supplementation with FA at concentrations of 5, 15 and 50 μM reduced the MP count in the cell culture supernatant to 345 ± 332, 873 ± 329, and 688 ± 453 kMP, respectively (p = 0.03). MTHFR 677C>T heterozygosity was associated with a significant increase in MP formation after stimulation with Hcy compared to the control conditions: 3,617 ± 152 vs 1,518 ± 343 kMP (p = 0.02). Furthermore, the MTHFR genotype altered MP formation after Met loading. On average, 24% of the entire MP population was apoptotic (annexin V-positive). Endothelial function impairment due to HHcy is related to MP shedding, which may involve platelets and other blood and vascular cells. MP shedding is a physiological response to moderate HHcy.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

16

Numer

1

Opis fizyczny

p.69-78,fig.,ref.

Twórcy

autor
  • Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
autor
autor

Bibliografia

  • 1. Perła-Kajan, J., Twardowski, T. and Jakubowski, H. Mechanism of homocysteine toxicity in humans, Amino Acids 2 (2007) 561-572.
  • 2. Skibińska, E. Sawicki, R., Lewczuk, A., Prokop, J., Musiał, W., Kowalska, I. and Mroczko, B. Homocysteine and progression of coronary artery disease. Kardiol. Pol. 60 (2004) 197-205.
  • 3. Saposnik, G., Ray, J.G., Sheridan, P., McQueen, M. and Lonn E. Heart outcomes prevention evaluation 2 investigators. homocysteine-lowering therapy and stroke risk, severity, and disability: additional findings from the HOPE 2 trial. Stroke 40 (2009) 1365-1372.
  • 4. Köktürk, N., Kanbay, A., Aydogdu, M., Ozyilmaz, E., Bukan, N. and Ekim, N. Hyperhomocysteinemia prevalence among patients with venous thromboembolism. Clin. Appl. Thromb. Hemost. (2010) doi:10.1177/1076029610378499.
  • 5. Trabetti, E. Homocystine, MTHFR gene polymorphisms, and cardiocerebrovascular risk. J. Appl. Genet. 49 (2008) 267-282.
  • 6. Willems, F.F., Boers, G.H.J., Blom, H.J., Aengevaeren, W.R. and Verheugt, F.W. Pharmacokinetic study on the utilization of 5-methyltetrahydrofolate and folic acid in patients with coronary artery disease. Brit. J. Pharmacol. 141 (2004) 825-830.
  • 7. Kanani, P.M., Sinkey, C.A., Browning, R.L., Allaman, M., Knapp, H.R. and Haynes, W.G. Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst(e)inemia in humans. Circulation 100 (1999) 1161-1168.
  • 8. Edirimanne, V.E., Woo, C.W., Siow, Y.L., Pierce, G.N. and Xie, J.Y. Homocysteine stimulates NADPH oxidase-mediated superoxide production leading to endothelial dysfunction in rats. Can. J. Physiol. Pharmacol. 85 (2007) 1236-1247.
  • 9. Stühlinger, M.C., Tsao, P.S., Her, J.H., Kimoto, M., Balint, R.F. and Cooke, J.P. Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation 104 (2001) 2569-2575.
  • 10. Jimenez, J.J., Jy, W., Mauro, L.M., Soderland, C., Horstman, L.L. and Ahn, Y.S. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb. Res. 109 (2003) 175-180.
  • 11. Brodsky, S.V., Malinowski, K., Golightly, M., Jesty, J. and Goligorsky, M.S. Plasminogen activator inhibitor-1 promotes formation of endothelial microparticles with procoagulant potential. Circulation 106 (2002) 2372- 2378.
  • 12. Bulut, D., Tüns, H. and Mügge, A. CD31+/Annexin V+ microparticles in healthy offsprings of patients with coronary artery disease. Eur. J. Clin. Invest. 39 (2009) 17-22.
  • 13. Faure, V., Dou, L., Sabatier, F., Cerini, C., Sampol, J., Berland, Y., Brunet, P. and Dignat-George, F. Elevation of circulating endothelial microparticles in patients with chronic renal failure. J. Thromb. Haemost. 4 (2006) 566-573.
  • 14. Jourde-Chiche, N., Dou, L., Sabatier, F., Calaf, R., Cerini, C., Robert, S., Camoin-Jau, L., Charpiot, P., Argiles, A., Dignat-George, F. and Brunet, P. Levels of circulating endothelial progenitor cells are related to uremic toxins and vascular injury in hemodialysis patients. J. Thromb. Haemost. 9 (2009) 1576-1584.
  • 15. Bald, E., Chwatko, R., Głowacki, K. and Kuśmierek, K. Analysis of plasma thiols by high-performance liquid chromatography with ultraviolet detection. J. Chromatography 1032 (2004) 109-115.
  • 16. Kushak, R.I., Nestoridi, E., Lambert, J., Selig, M.K., Ingelfinger, J.R. and Grabowski, E.F. Detached endothelial cells and microparticles as sources of tissue factor activity. Thromb. Res. 116 (2005) 409-419.
  • 17. Martínez, M.C., Tesse, A., Zobairi, F. and Andriantsitohaina, R. Shed membrane microparticles from circulating and vascular cells in regulating vascular function. Am. J. Physiol. Heart. Circ. Physiol. 288 (2005) H1004- 1009.
  • 18. Lambert, J., van den Berg, M., Steyn, M., Rauwerda, J.A., Donker, A.J. and Stehouwer, C.D. Familial hyperhomocysteinaemia and endotheliumdependent vasodilatation and arterial distensibility of large arteries. Cardiovasc. Res. 42 (1999) 743-751.
  • 19. Simak, J. Gelderman, M.P. Yu, H. Wright, V. and Baird, A.E. Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome. J. Thromb. Haemost. 4 (2006) 1296-1302.
  • 20. Brodsky, S.V., Zhang, F., Nasjletti, A. and Goligorsky, M.S. Endotheliumderived microparticles impair endothelial function in vitro. Am. J. Physiol. Heart. Circ. Physiol. 286 (2004) H1910-H1915.
  • 21. Olszanecki, R., Kozlovski, V.I., Chłopicki, S. and Gryglewski, R.J. Paradoxical augmentation of bradykinin-induced vasodilatation by xanthine/xanthine oxidase-derived free radicals in isolated guinea pig heart. J. Physiol. Pharmacol. 53 (2002) 689-699.
  • 22. Usui, M., Matsuoka, H., Miyazaki, H., Ueda, S., Okuda, S. and Imaizumi, T. Endothelial dysfunction by acute hyperhomocysteinemia: restoration by folic acid. Clin. Sci. 96 (1999) 235-239.
  • 23. den Heijer, M., Graafsma, S., Lee, S.Y., van Landeghem, B., Kluijtmans, L., Verhoef, P., Beaty, T.H. and Blom, H. Homocysteine levels before and after methionine loading in 51 Dutch families. Eur. J. Hum. Genet. 13 (2005) 753-762.

Uwagi

PL
Rekord w opracowaniu.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-94bfa876-5828-4afc-b1c5-50a832fb8fe6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.