PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 524 |
Tytuł artykułu

Resistance mechanisms of winter cereals and forage grasses to snow mould fungi

Autorzy
Warianty tytułu
PL
Mechanizmy odporności zbóż ozimych i traw pastewnych na grzyby wywołujące pleśń śniegową
Języki publikacji
EN
Abstrakty
EN
Winter survival of cereals and grasses depends mainly on plant resistance to low temperature and to snow mould fungi. To persist winter plants have to be tolerant to different kind of stresses: abiotic such as low temperature, long-term snow and ice cover, freeze-induced plant desiccation or frequent freezing and thawing, and biotic - many species of snow mould fungi. During the cold acclimation, cereals and grasses become more resistant to both stresses: cold and snow mould. Earlier seeded plants with a greater number of crowns are more resistant to snow mould. Infection caused by snow mould induces a complex plant response, including such processes as the synthesis of PR (pathogenesis-related) proteins (chitinase and β-1,3-glucanas), production of active oxygen species (AOS), synthesis of phenolics, phyotalexins, accumulation of callosis and soluble carbohydrates, and a decrease of water potential. In the paper the most common defence mechanisms against snow mould pathogens are discussed.
PL
Zimotrwałość traw i zbóż ozimych zależy głównie od ich odporności na niską temperaturę i patogeny powodujące pleśń śniegową. Aby przetrzymać warunki zimowe rośliny muszą charakteryzować się tolerancją, zarówno na takie stresy abiotyczne, jak niska temperatura, długo zalegająca pokrywa śniegowa, ograniczony dostęp tlenu i światła, wysychanie tkanek pod wpływem mrozu, czy częste zamarzanie i tajanie, jak też stresy biotyczne, czyli wiele gatunków grzybów rozwijających się pod śniegiem w niskiej temperaturze. Odporność na oba rodzaje stresów rośliny nabywają w czasie aklimacji odbywającej się podczas obniżających się temperatur jesienią i na początku zimy. Odporność na warunki zimowe jest wyższa u roślin wysianych wcześniej i lepiej rozkrzewionych. Infekcja grzybami pleśni śniegowej indukuje w roślinach szereg procesów obronnych, do których zaliczana jest synteza białek typu PR (ang. pathogensis-related), jak chitynaza czy β-1,3-glukanaza, produkcja reaktywnych form tlenu, synteza związków fenolowych, fitolaeksyn, akumulacja kallozy, rozpuszczalnych węglowodanów czy obniżanie potencjału wody komórek. W prezentowanym artykule omówiono najczęściej spotykane mechanizmy odpornościowe uruchamiane w reakcji na atak grzybów niskotemperaturowych.
Wydawca
-
Rocznik
Tom
524
Opis fizyczny
p.357-368,ref.
Twórcy
autor
  • Department of Plant Physiology, Agricultural University in Krakow, Podluzna 3, 30-239 Krakow, Poland
autor
Bibliografia
  • Agrawal G. K., Rakwal R., Jwa N., Agrawal V. P. 2001. Signalling molecules and blast pathogen attack activates rice OsPRla and OsPRlb genes: Amodel illustrating components participating during defence/stress response. Plant Physiol. Biochem. 39: 1095 - 1103.
  • Agrios G. N. 1997. Plant diseases caused by Mollicutes: phytoplasmas and spiroplasmas, in: Plant Pathology. 4th, Agrios G. N. (Ed.), New York: Academic Press: 457 - 470.
  • Akiyama T., Pillai M. A. 2001. Molecular cloning, characterization and in vitro expression of a novel endo-1,3-a-glucanase up-regulated by ABA and drought stress in rice (Oryza sativa L.). Plant Sci. 161: 1089 - 1098.
  • Arsvoll K. 1973. Winter damage in Norwegian grasslands, 1968 - 1971. Scientific Reports of the Agricultural University of Norway 52: 1 - 21.
  • Arsvoll K. 1975. Effects of hardening, plant age and development in Phleum pratense and Festuca pratensis on resistance to snow mould fungi. Scientific Reports of the Agricultural University of Norway 54.
  • Arsvoll K. 1977. Effects of hardening, plant age, and development in Phleum prataense an Festuca pratensis on resistance to snow mould fungi. Scientific Reports of the Agricultural University of Norway 56: 1 - 13.
  • Arsvoll K., Larsen A. 1977. Effects of nitrogen, phosphorus, and potassium on resistance to snow mould fungi and on freezing tolerance in Phleum pratense. Meld. Norges Landbrukshogsk 56: 1 - 14.
  • Baker C. J., Orlandi E. W. 1995. Active oxygen in plant pathogenesis. Annu. Rev. Phytopathol. 33: 299 - 321.
  • Bentgsson B. 1989. Soluble sugar changes during winter and resistance to snow mould in winter wheat. J. Phytopathol. 124: 162 - 170.
  • Bolwell G. P., Bindschedler L. V., Blee K., Butt V. S., Davies D. R., Gardner S. L., Gerrish C., Minibayeva F. 2002. The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J. Exp. Bot. 53: 1367 - 1376.
  • Brisson L. F., Tenhaken R., Lamb C. J. 1994. The function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6: 1703 - 1712.
  • Bruehl G. W. 1967. Effect ofplant size on resistance to snow-mold of winter wheat. Plant Dis. Rep. 51: 815 - 819.
  • Bruehl G. W. 1982. Developing wheat resistant to snow mould in Washington State. Plant Dis. Rep. 66: 1090 - 1095.
  • Bruehl G. W., Cunfer B. 1971. Physiological and environmental factors that affect the severity of snow-mould of wheat. Phytopathol. 61: 792 - 799.
  • Collinge D. B., Kragh K. M., Mikkelsen J. D., Nielsen K. K., Rasmussen U., Vad K. 1993. Plant chitinase. Plant J. 3: 31 - 40.
  • Dixon R. A., Harrison M. J., Lamb C. J. 1994. Early events in the activation of plant defense responses. Annu. Rev. Phytopathol. 32: 479 - 501.
  • Dixon R. A., Lamb C. J. 1990. Molecular communication in interaction between plants and microbial pathogens. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 339 - 367.
  • Elstner E. F., Schempp H., Preibisch G., Hipelli S., Oswald W. 1994. Biological sources of free radicals, in: Free radicals in the environment, medicine and toxicology. Nohl H., Esterbauer H., Rice-Evans C. (Eds), Richelieu Press: 13 - 45.
  • Ergon A., Klemsdal S. S., Tronsmo A. M. 1998. Interaction between cold hardening and Microdochium nivale infection on expression of pathogenesis-related genes in winter wheat. Physiol. Mol. Plant Pathol. 53: 301 - 310.
  • Garcia-Olmedo F., Molina A., Alamillo J. M., Rodriguez-Palenzuela P. 1998. Plant defense peptides. Biopolymers 47: 479 - 491.
  • Gaudet D. A. 1994. Progress towards understanding interactions between cold hardiness and snow mould resistance and development of resistant cultivars. Can. J. Plant Pathol. 16: 241 - 246.
  • Gaudet D. A., Bhalla M. K., Clayton G. C., Chen T. H. H. 1989. Effect of cottony snow mould and low temperatures on winter wheat survival in central and northern Alberta. Can. J. Plant Pathol. 11: 291 - 296.
  • Gaudet D. A., Chen T. H. H. 1986. Effects of hardening and plant age on development of resistance to cottony snow mould (Coprinus psychromordibus) in winter wheat under cotrolled conditions. Can. J. Bot. 65: 1152 - 1156.
  • Gaudet D. A., Laroche A., Yoshida M. 1999. Low temperature-wheat-fungal interactions: A carbohydrate connection. Physiol. Plant. 106: 437 - 444.
  • Gaudet D. A., Laroche A., Frick M., Davoren J., Puchalski B., Ergon A. 2000. Expression of plant defence-related (PR-proteins) transcripts during hardening and dehardening of winter wheat. Physiol. Mol. Plant Pathol. 57: 15 - 24.
  • Gaudet D. A., Laroche A., Puchalski B. 2001. Seeding date alters carbohydrate accumulation in winter wheat. Crop Sci. 41: 728 - 738.
  • Gaudet D. A., Laroche A., Frick M., Huel R., Puchalski B, Ergon A. 2003a. Cold-induced expression of plant defensins and lipid transfer protein transcripts in winter wheat. Physiol. Plant. 117: 1 - 11.
  • Gaudet D. A., Laroche A., Frick M., Huel R., Puchalski B. 2003b. Plant development affects the cold-induced expression of plant defence-related transcripts in winter wheat. Physiol. Mol. Plant Pathol. 62: 175 - 184.
  • Goodman R. N., Novacky A. J. 1994. The hypersensitive reaction in plants to pathogens. St Paul: APS Press.
  • Guiderdoni E., Cordero M. J., Vignols F., Garcia-Garrido J. M, Lescot M., Tharreau D., Meynard D., Ferriere N., Notteghem J.-L., Delseny M. 2002. Inducibility by pathogen attack and developmental regulation of the rice LTP1 gene. Plant Mol. Biol. 49: 683 - 699.
  • Hadwiger L. A., Loschke D. C. 1981. Molecular communication in host-parasite interactions: hexosamine polymers (chitosan) as regulator compounds in race-specific and other interactions. Phytopathol. 71: 756 - 762.
  • Ham K.-S., Kauffmann S., Albersheim P., Darvill A. G. 1991. Host-pathogen interactions XXXIX. A soybean pathogenesis-related protein with fT1,3-glucanase activity releases phytoalexin elicitor-active heat-stable fragments from fungal walls. Mol. Plant- Microbe Interactions 4: 545 - 552.
  • Hammond-Kosack K. E., Jones J. 1996. Resistance gene-dependent plant defense response. Plant Cell 8: 1773 - 1791.
  • Hofgaard I. S. 2003. Resistance to pin snow mould (Microdochium nivale) in perennial reygrass (Lolium perenne L.). The effect of age and cold hardening on resistance to pink snow mould (Microdochium nivale) in perennial ryegrass (Lolium perenne L.). Hofgaard I. S., Wanner L. A., Tronsmo A. M. Doctor Scientarum theses 2003: 11, Paper II.
  • Hon W. C., Griffith M., Chong P., Yang D. S. C. 1994. Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves. Plant Physiol. 109: 879 - 889.
  • Hon W. C., Griffith M., Młynarz A., Kwok Y. C., Yang D. S. C. 1995. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol. 109: 879 - 889.
  • Ismail A. 2001. Effects of cold hardening and plant activator (bion) on induction of resistance against the snow mould Microdochium nivale in wheat (Triticum aestivum) cultivars. Doctor Scientarum theses 2001, Norwegian Agriculture University in As, NLH, Plant Protection Institute, Division of Plant Pathology.
  • Jamalainen E. A. 1974. Resistance in winter cereals and grasses to low-temperature parasitic fungi. Annu. Rev. Phytopathol. 12: 281 - 302.
  • Klimov S. V., Astakhova N. V., Trunova T. I. 1999. Changes in photosynthesis, dark respiration rates and photosynthetic carbon partitioning in winter rye and wheat seedlings during cold hardening. J. Plant Physiol. 155: 734 - 739.
  • Krol M., Griffith M., Huner N. P. A. 1984. An appropriate physiological control for environmental temperature studies: comparative growth kinetics of winter rye. Can. J. Bot. 62: 1062 - 1068.
  • Kuwabara C., Takezawa D., Shimada T., Hamada T., Fujikawa S., Arakawa K. 2002. Abscisic acid- and cold-induced thaumatin-like protein in winter wheat has an antifungal activity against snow mould, Microdochium nivale. Physiol. Plant. 115: 101 - 110.
  • Lamb C. J. 1994. Plant disease resistance genes in signal perception and transduction. Cell 76: 419 - 422.
  • Larsen A. 1978. Freezing tolerance in grasses. Methods for testing in controlled environments. Sci. Rep. Agric. Univ. Norway 57: 2 - 54.
  • Larsen A. 1994. Breeding winter hardy grasses. Euphytica 77: 231 - 237.
  • Levine A., Tenhaken R., Dixon R., Lamb C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583 - 593.
  • Levitt J. 1980. Responses of plants to environmental stresses. London Academic Press 1: 697.
  • Liyama K., Lam T. B. T., Meikle P. J., Rhodes D., Stone B. A. 1994. Covalent cross-links in the cell wall. Plant Physiol. 104: 315 - 320.
  • Low P. S., Merida J. R. 1996. The oxidative burst in plant defense: function and signal transduction. Physiol. Plant. 96: 533 - 542.
  • Macdowall F. D. H. 1974. Growth kinetics of marquis wheat. VI genetic dependence and winter hardening. Can. J. Bot. 52: 151 - 157.
  • Margis-Pinheiro M., Martin C., Didierjean L., Burkard G. 1993. Differentiation expression of bean chitinase genes by virus infection, chemical treatment or UV radiation. Plant Mol. Biol. 22: 659 - 668.
  • Mauch F., Mauch-Mani B., Boller T. 1988. Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combinations of chitinase and fi-1,3-glucanase. Plant Physiol. 88: 936 - 942.
  • Mehdy M. C. 1994. Active oxygen species in plant defense against pathogens. Plant Physiol. 105: 467 - 472.
  • Mohr P. G., Chill D. M. 2001. Relative roles of glyceolin, lignin and the hypersensitive response and the influence of ABA in compatible and incompatible interactions of soybeans with Phytophtora sojae. Physiol. Mol. Plant Pathol. 58: 31 - 41.
  • Molina A., Garcia-Olmedo F. 1993. Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins. Plant J. 4: 983 - 991.
  • Nakajima T., Abe J. 1996. Environmental factors affecting expression of resistance to pink snow mould caused by Microdochium nivale in winter wheat. Can. J. Bot. 74: 1783 - 1788.
  • Nissinen O. 1996. Analysis of climatic factors affecting snow mould injury in firs-year timothy (Phleum pratense L.) with special reference of Sclerotinia borealis. Acta University Oulu A 289: 1 - 115.
  • Pollock C. J. 1979. Seasonal patterns of fructan metabolism in forage grasses. New Phytologist 83: 9 - 15.
  • Prończuk M., Prończuk S. 1987. Przydatnoćś metody chłodowej w odporności życicy trwałej na Fusarium nivale (Fr) Ces. Biuletyn IHAR 162: 27 - 32.
  • Pulli S. K., Hjortsholm K., Larsen A., Gudleifsson B. A., Larsson S., Kristiansson B., Hömmö L. M., Tronsmo A. M., Ruuth P., Kristensson C. 1996. Development and evaluation of laboratory testing methods for winterhardiness breeding. Nordic Gene Bank: 1 - 68.
  • Roberts D. W. A. 1986. Chromosomes in ’Cadet ’ and ‘Rescue ’ wheats carrying loci for cold hardiness and vernalization response. Can. J. Gen. Cytol. 28: 991 - 997.
  • Solberg E. D., Penney D. C., McKenzie R. H., J. T. Harapiak J. T., Flore. N. 1994. Optimal seedplaced fertilizer for airseeded crops in Alberta. 31st Annual Alberta Soil Science Workshop: 311 - 319.
  • Stintzi A., Heitz T., Prasad V., Wiedemann-Merainoglu S., Kaufmann S., Geoffroy P., Legrand M., Fritig B. 1993. Plant pathogenesis-related proteins and their role in defence against pathogens. Biochemie 75: 687 - 706.
  • Sutherland M. W. 1991. The generation of oxygen radicals during host plant responses to infection. Physiol. Mol. Plant Pathol. 39: 79 - 93.
  • Tretyn A. 1998. Odbiór i przekazywanie sygnałów w komórkach roślinnych, w: Podstawy fizjologii roślin. Kopcewicz J., Lewak S. (Eds), WN-PWN: 91 - 105.
  • Tronsmo A. M. 1982. Effects of low temperature hardening on resistance to biotic and abiotic fctors in grasses. PhD Thesis, Norwegian Plant Protection Institute: 1 - 70.
  • Tronsmo A. M., Gregersen P., Hjeljord L., Sandal T., Bryngelsson T., Collinge D. B. 1993. Cold-induced disease resistance, in: Mechanisms of Plant Defence. Fritig B., Legrand M. (Eds), Kluwer Academic Publishers: 369.
  • Tzeng D. D., DeVay J. E. 1993. Role of oxygen radicals in plant disease development. Adv. Plant Pathol. 10: 1 - 34.
  • Uemura M., Joseph R. A., Steponkus P. L. 1995. Cold acclimation of Arabidopsis thaliana. Effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol. 109: 15 - 20.
  • Vasil’yew I. M. 1961. Wintering of plants. American Institute of Biological Science, Washington, DC.
  • Veisz O., Galiba G., Sutka J. 1996. Effect of sowing date and vernalisation on the growth of winter barley and its resistance to powdery mildew (Erysiphe graminis f. sp. hordei). J. Plant Physiol. 149: 439 - 443.
  • Wiśniewski K., Zagdańska B., Prończuk M. 1997. Interrelationship between frost tolerance, drought and resistance to snow mould (Microdochium nivale). Acta Agronom. Hungar. 45: 311-316.
  • Yoshida M., Abe J., Moriyama M., Kuwabara T. 1998. Carbohydrate levels among winter wheat cultivars varying in freezing tolerance and snow mould resistance during autumn and winter. Physiol. Plant. 103: 8 - 16.
  • Yu X., Griffith M. 1999. Antifreeze proteins in winter rye leaves form oligomeric complexes. Plant Physiol. 119: 1361 1369.
  • Yu X., Griffith M. 2001. Winter rye antifreeze activity increases in response to cold and drought, but not abscisic acid. Physiol. Plant. 112: 78 - 86.
  • Yun D.-J., Bressan R. A., Hasegawa P. M. 1997. Plant antifungal proteins. Plant Breed. Rev. 14: 39 - 88.
  • Zhu Q., Maher S., Masoud S., Dixon R. A., Lamb C. J. 1994. Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Biotechnol. 12: 807 - 812.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.dl-catalog-8f8422a0-6968-44c3-9cfd-8c9cbe986b2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.