PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 67 | 01 |

Tytuł artykułu

Katelicydyny i defensyny świń

Warianty tytułu

EN
Porcine cathelicidins and defensins

Języki publikacji

PL

Abstrakty

EN
Hundreds of antimicrobial peptides (AMP) have been described in vertebrates, invertebrates, plants and even fungi. The present article describes the cathelicidins and defensins of pigs. Antimicrobial peptides possess direct antimicrobial activity against a wild spectrum of microorganisms (bacteria, fungi, viruses ect.) and the ability to modulate immunological response. The activity of AMP consists mainly in disrupting the microbial membrane. Defensins and cathelicidins are two main classes of AMP. To date, several AMP have been isolated from porcine tissues. The presence of AMP was confirmed in the bone marrow, tongue, trachea, kidneys, reproductive tract, urinary tract and small intestine. Porcine cathelicidins are the first cathelicidins isolated from mammals. So far, eleven porcine cathelicidins have been described: PR-39 (proline-rich 39-amino-acid peptide), PF-1 (proline-phenylalanine-rich prophenin-1), PF-2, cysteine-rich proteins called protegrins (PG) (from PG-1 to PG-5), three porcine myeloid antimicrobial peptides PMAP-23, PMAP-36 and PMAP-37. As yet, no á-defensins have been found in pigs; however, thirteen isoforms of porcine â-defensins (pBD) have been identified, including pBD-1, -2, -3, -4, -104, -108, -114, -123, -125, -126, -129 and pEP2C and pEP2E. In recent years, when the increasing bacterial resistance to antimicrobial agents has been observed, the studies of AMP are necessary, especially with respect to their role as an alternative to antibiotics.

Wydawca

-

Rocznik

Tom

67

Numer

01

Opis fizyczny

s.20-24,tab.,bibliogr.

Twórcy

  • Zakład Chorób Świń, Państwowy Instytut Weterynaryjny - Państwowy Instytut Badawczy, Al.Partyzantów 57, 24-100 Puławy

Bibliografia

  • 1.Bevins C. L.: The peneth cell and innate immune response. Curr. Opin. Gastroenterol. 2004, 20, 572-580.
  • 2.Boman H. G.: Peptide antibiotic and their role in the innate immunity. Annu. Rev. Immunol 1995, 13, 61-92.
  • 3.Brogden K. A.: Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238-250.
  • 4.Chaly Y. V., Paleolog E. M., Kolesnikowa T. S., Tishonov I. I., Petratchenko E. V., Voitenok N. N.: Neutrophil alpha-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells. Eur. Cytokine Netw. 2000, 11, 257-266. 5.Cole A. M., Lehrer R. I.: Minidefensins: antimicrobial peptides with activity against HIV-1. Curr. Pharm. Des. 2003, 9, 1463-1473.
  • 6.Diamond G., Zasloff M., Eck H., Brasseur M., Maloy W. L., Bevins C. J.: Tracheal antimicrobial peptide, a novel cysteine-rich peptide form mamma lian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc. Natl. Acad. Sci. USA 1991, 88, 3952-3956.
  • 7.Elahi S., Buchanan R. M., Attah-Poku S., Townsend H. G. G., Babiuk L. A., Gerdts V.: The host defense peptide beta-defensin 1 confers protection against Bordetella pertussis in newborn piglets. Infection and immunity 2006, 74, 2338-2352.
  • 8.Gallo R. L., Ono M., Povsic T., Page C., Erickson E., Klagsburn M., Bernifield M.: Syndecans, cell surface heparin sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc. Natl Acad. Sci. USA 1994, 91, 11035-11039.
  • 9.Ganz T.: Immunology. Versatile defensins. Science 2002, 298, 977-979.
  • 10.Giacometti A., Cirioni O., Ghisellii R., Mochcegiani F., Viticchi C., Orlando F.: Antiendotoxin activity of protegrin analog IB-367 alone or in combination with piperacillin in different animal models of septic shock. Peptides 2003, 24, 1747-1752.
  • 11.Huang H. J., Ross C. R., Leto T. L., Blecha F.: Chemoattaractant properties of PR-39, a neutrophil antibacterial peptide. J. Leukoc. Biol. 1997, 61, 624-629.
  • 12.Islam D., Bandholtz L., Nilsson J., Wigzell H., Christensson B., Agerberth B., Gudmundsson G.: Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat. Med. 2001, 7, 180-185.
  • 13.Jin T., Bokarewa M., Foster T., Mitchell J., Higgins J., Tarkowski A.: Staphylococcus aureus resists human defensins by producing staphylokinase, a novel bacterial evasion mechanism. J. Immunol. 2004, 172, 1169-1176.
  • 14.Larrick J. W., Hirata M., Balint R. F., Lee J., Zhong J., Wright S. C.: Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect. Immun. 1995, 63, 1291-1297.
  • 15.Lehrer R. I., Ganz T.: Cathelicidins: a family of endogenous antimicrobial peptides. Curr. Opin. Hematol. 2002, 9, 18-22.
  • 16.Li J., Post M., Volk R., Gao Y., Li M., Metais C., Sato K., Tsai J., Aird W., Rosenberg R.: Pr-39, a peptide regulator of angiogenesis. Nat. Med. 2000, 6, 49-55.
  • 17.Muinck E. D., Nagy N., Tirziu D., Murakami M., Gurusamy N., Goswami S. K., Ghatpande S., Engelman R. M., Simons M., Das D. K.: Protection against myocardial ischemia-reperfusion injury by angiogenic masterswitch protein PR-39 gene therapy: the roles of HIF 1 alpha stabilization and FGFR1 signaling. Antioxid Redox Signal 2007, 9, 437-445.
  • 18.Mygind H., Fischer R. L., Schnorr K. M., Hansen M. T., Sönksen C. P., Ludvigsen S., Raventós D., Buskov S., Christensen B., De Maria L., Taboureau O., Yaver D., Elvig-Jørgensen S. G., Sørensen M. V., Christensen B. F., Kjærulff S., Frimodt-Moller N., Lehrer R. I., Zasloff M., Kristensen H. H.: Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 2005, 437, 975-980.
  • 19.Nizet V., Gallo R. L.: Cathelicidins and innate defense against invasive bacterial infection. Scan. J. Infect. Dis. 2003, 35, 670-676.
  • 20.Panyutich A., Shi J., Boutz P. L., Zhao C., Ganz T.: Porcine polymorphonuclear leukocytes generate extracellular microbicidal activity by elastase-mediated activation of secreted proprotegrins. Infec. Immunol. 1997, 65, 978-985.
  • 21.Papo N., Shai Y.: A molecular mechanism for lipopolysaccharide protection of Gram-negative bacteria from antimicrobial peptides. J. Biol. Chem. 2005, 18, 10378-10387.
  • 22.Park Y., Jang S. H., Lee D. G., Hahm K. S.: Antinematodal effect of antimicrobial peptide, PAMA-23, isolated from porcine myeloid against Caenorhabditis elegans. J. Pept. Sci. 2004, 10, 304-311.
  • 23.Philippott M. P.: Defensins and acne. Mol. Immunol. 2003, 40, 457-462.
  • 24.Qi S., Chen J., Guo R., Yu B., Chen D.: â-defensins gene expression in tissues of the crossbred and Tibetan pigs. Lives Sci. 2009, 123, 161-168.
  • 25.Ramanathan B., Davis E. G., Ross C. R., Blecha F.: Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. Microb. Infect. 2002, 4, 361-372.
  • 26.Sang Y., Blecha F.: Porcine host defense peptides: Expanding repertoire and functions. Dev. Comp. Immunol. 2009, 33, 334-343.
  • 27.Scott M. G., Hancock R. E.: Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol. 2000, 20, 407-431.
  • 28.Schmidtchen A., Frick I. M., Andersson E., Tapper H., Bjorck L.: Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 2002, 422, 157-168.
  • 29.Veldhuizen E. J. A., Dijk A., Tersteeg M. H. G., Kalkhove S. I. C., Meulen J., Niewold T. A., Haagsman H. P.: Expression of â-defensins pBD-1 and pBD-2 along the small intestinal tract of the pig: lack of upregulation in vivo upon Salmonella typhimurium infection. Mol. Immunol. 2007, 44, 276-283.
  • 30.Veldhuizen E. J., Koomen I., Ultee T., van Dijk A., Haagsman H. P.: Sallmonella serovar specific upregulation of porcine defensins 1 and 2 in a jejunal epithelial cell line. Vet. Microbiol. 2009, 136, 69-75.
  • 31.Verbanac D., Zanetti M., Romeo D.: Chemotactic and protease-inhibiting activities of antibiotic peptide precursors. FEBS Lett. 1993, 317, 255-258.
  • 32.Wiechuła B. E., Tustanowski J. P., Martirosian G.: Peptydy antydrobnoustrojowe. Wiadomości Lekarskie 2006, LIX, 7-8.
  • 33.Williams H. C., Griendling K. K.: NADPH oxidase inhibitors: new antihypertensive agents? Cardiovasc. Pharmacol. 2007, 50, 9-16.
  • 34.Witkowska D., Bartyś A., Gamian A.: Defensyny i katelicydyny jako naturalne antybiotyki peptydowe. Post. Hig. Med. Dośw. 2008, 62, 694-707.
  • 35.Wu H., Zhang C. R., Ross C. R., Blecha F.: Cathelicidin gene expression in porcine tissues: roles in ontogeny and tissue specifity. Infect. Immun. 1999, 67, 439-442.
  • 36.Yang D., Chertov O., Oppenheim J. J.: The role of mammalian antimicrobial peptides and proteins in awakening of innate host defenses and adaptive immunity. Cell. Mol. Life Sci. 2001, 58, 978-989.
  • 37.Yeaman M. R., Yount N. Y.: Mechanism of antimicrobial peptides action and resistance. Pharmacol. Rev. 2003, 55, 27-55.
  • 38.Zhao C., Ganz T., Lehrer R. I.: The structure of porcine protegrin genes. FEBS Lett. 1995, 368, 197-202.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-8584270b-fdbd-4e76-9a0e-fba11ffd3ad1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.