PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 12 | 1 |

Tytuł artykułu

Echolocation calls of the bats of Trinidad, West Indies: is guild membership reflected in echolocation signal design?

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Time-expanded echolocation calls were recorded from 29 species of Neotropical bats in lowland moist tropical forest in Trinidad, West Indies with three aims: (1) to describe the echolocation calls of the members of a diverse Neotropical bat community, especially members of the family Phyllostomidae, whose calls are not well documented (2) to investigate whether multivariate analysis of calls allows species and foraging guilds to be identified and (3) to evaluate the use of bat detectors in surveying the phyllostomids of Neotropical forests. The calls of 12 species of the family Phyllostomidae are described here for the first time and a total of 29 species, belonging to five families (Emballonuridae, Mormoopidae, Phyllostomidae, Molossidae and Vespertilionidae) were recorded. Quadratic discriminant function analysis (DFA) was used to obtain classification rates for each one of 11 individual species and for six guilds (based on diet, foraging mode and habitat) comprising 26 species. Overall classification rates were low compared to similar studies conducted in the Palaeotropics. We suggest that this may be due to a combination of ecological plasticity for certain species and a loose relationship between echolocation call shape, fine-grained resource partitioning and resource acquisition in phyllostomids.

Wydawca

-

Rocznik

Tom

12

Numer

1

Opis fizyczny

p.217-229,fig.,ref.

Twórcy

autor
  • Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland
autor
autor
autor

Bibliografia

  • 1. L. Ahlen , and H. Baagøe . 1999. Use of ultrasound detectors for bat studies in Europe: experiences from field identification, surveys, and monitoring. Acta Chiropterologica, 1: 137–150. Google Scholar
  • 2. H. D. J. N. Aldridge , and I. L. Rautenbach . 1987. Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology, 56: 763–778. Google Scholar
  • 3. R. M. R. Barclay 1999. Bats are not birds-a cautionary note on using echolocation calls to identify bats: a comment. Journal of Mammalogy, 80: 290–296. Google Scholar
  • 4. G. P. Bell 1985. The sensory basis of prey location by the California leaf-nosed bat Macrotus californicus (Chiroptera: Phyllostomidae). Behavioural Ecology and Sociobiology, 16: 343–347. Google Scholar
  • 5. G. P. Bell , and M. B. Fenton . 1984. The use of Doppler shift echoes as a flutter detection and clutter rejection system: the echolocation and feeding behaviour of Hipposideros ruber (Chiroptera: Hipposideridae). Behavioural Ecology and Sociobiology, 15: 109–114. Google Scholar
  • 6. S. Biscardi , J. Orprecio , M. B. Fenton , A. Tsoar , and J. M. Ratcliffe . 2004. Data, sample sizes and statistics affect the recognition of species of bats by their echolocation calls, Acta Chiropterologica, 6: 347–363. Google Scholar
  • 7. F. M. Clarke , D. V. Pio , and P. A. Racey . 2005. A comparison of logging systems and bat diversity in the Neotropics. Conservation Biology, 19: 1194–1204. Google Scholar
  • 8. F. M. Clarke , L. V. Rostant , and P. A. Racey . 2005. Life after logging: post-logging recovery of a Neotropical bat community. Journal of Applied Ecology, 42: 409–420. Google Scholar
  • 9. P. A. Faure , and R. M. R. Barclay . 1994. Substrate-gleaning versus aerial-hawking: plasticity in the foraging and echolocation behaviour of the long-eared bat, Myotis evotis , Journal of Comparative Physiology, 174A: 651–660. Google Scholar
  • 10. M. B. Fenton 1989. Head size and the foraging behaviour of animal-eating bats. Canadian Journal of Zoology, 67: 2029–2035. Google Scholar
  • 11. M. B. Fenton 1990. The foraging behaviour and ecology of animal eating bats. Canadian Journal of Zoology, 68: 411–422. Google Scholar
  • 12. M. B. Fenton , and D. R. Griffin . 1997. High altitude pursuit of insects by echolocating bats. Journal of Mammalogy, 78: 247–250. Google Scholar
  • 13. M. B. Fenton , and J. Ratcliffe . 2004. Eavesdropping on bats. Nature, 429: 612–613. Google Scholar
  • 14. M. B. Fenton , C. V. Portfors , I. L. Rautenbach , and J. M. Waterman . 1998. Compromises: sound frequencies used in echolocation by aerial-feeding bats. Canadian Journal of Zoology, 76: 1174–1182. Google Scholar
  • 15. M. B. Fenton , S. Bouchard , M. J. Vonhof , and J. Zigouris . 2001. Time-expansion and zero-crossing period meter systems present significantly different views of echolocation calls of bats. Journal of Mammalogy, 82: 721–727. Google Scholar
  • 16. C. Flaquer , I. Torre , and A. Arrizabalaga . 2007. Comparison of sampling methods for inventory of bat communities. Journal of Mammalogy, 88: 526–533. Google Scholar
  • 17. D. Fukui , N. Agetsuma , and D. A. Hill . 2004. Acoustic identification of eight species of bat (Mammalia : Chiroptera) inhabiting forests of southern Hokkaido, Japan: potential for conservation monitoring. Zoological Science, 21: 947–955. Google Scholar
  • 18. N. P. Giannini , and E. K. V. Kalko . 2004. Trophic structure in a large assemblage of phyllostomid bats in Panama. Oikos, 105: 209–220. Google Scholar
  • 19. J. D. A. Grant 1991. Prey location by 12 Australian long-eared bats, Nyctophilus gouldi and N geoffroyi. Australian Journal of Zoology, 39: 45–56. Google Scholar
  • 20. C. O. Handley , D. E. Wilson , and A. L. Gardner . 1991. Demography and natural history of the common fruit bat, Artibeus jamaicensis, on Barro Colorado Island, Panama. Smithsonian Contributions to Zoology, 511: 333–354. Google Scholar
  • 21. N. V. Jennings , S. Parsons , K. E. Barlow , and M. B. Gannon . 2004. Echolocation calls and wing morphology of bats from the West Indies. Acta Chiropterologica, 6: 75–90. Google Scholar
  • 22. G. Jones , and, J. M. V. Rayner . 1989. Foraging behaviour of wild horseshoe bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolophidae). Behavioural Ecology and Sociobiology, 25: 183–191. Google Scholar
  • 23. G. Jones , T. Gordon , and J. Nightingale . 1992. Sex and age differences in the echolocation of the lesser horseshoe bat, Rhinolophus hipposideros. Mammalia, 56: 189–193. Google Scholar
  • 24. G. Jones , N. Vaughan , and S. Parsons . 2000. Acoustic identification of bats from directly sampled and time expanded recordings of vocalizations. Acta Chiropterologica, 2: 155–170. Google Scholar
  • 25. K. Jung , E. K. V. Kalko , and O. Von Helversen . 2007. Echolocation calls in Central American emballonurid bats: signal design and call frequency alternation. Journal of Zoology (London), 272: 125–137. Google Scholar
  • 26. E. K. V. Kalko 1995. Echolocation signal design, foraging habitats and guild structure in six Neotropical sheath-tailed bats (Emballonuridae). Symposia of the Zoological Society of London, 67: 259–273. Google Scholar
  • 27. E. K. V. Kalko , and M. A. Condon . 1998. Echolocation, olfaction and fruit display: how bats find fruit of flagellichouros cucurbits. Functional Ecology, 12: 364–372. Google Scholar
  • 28. E. K. V. Kalko , and C. O. Handley . 2001. Neotropical bats in the canopy: diversity, community structure, and implications for conservation. Plant Ecology, 153: 319–333. Google Scholar
  • 29. K. MacDonald , E. Matsui , R. Stevens , and M. B. Fenton . 1994. Echolocation calls and field identification of the eastern pipistrelles (Pipistrellus subflavinus, Chiroptera, Vespertilionidae) using ultrasonic bat detectors. Journal of Mammalogy, 75: 462–465. Google Scholar
  • 30. M. C. MacSwiney , F. Clarke , and P. A. Racey . 2008. What you see is not what you get: the role of ultrasonic detectors in increasing inventory completeness in Neotropical bat assemblages. Journal of Applied Ecology, 45: 1364–1371. Google Scholar
  • 31. G. Marimunthu , and G. Neuweiler . 1987. The use of acoustical cues for prey detection by the Indian false vampire bat, Megaderma lyra. Journal of Comparative Physiology, 160A: 509–515. Google Scholar
  • 32. K. McGarigal , S. Cushman , and S. Stafford . 2000. Multivariate Statistics for wildlife and ecology research, 1st edition. Springer-Verlag, New York, 283 pp. Google Scholar
  • 33. G. Neuweiler , W. Metzner , U. Heilman , R. Rubsamen , M. Eckrich , and H. H. Costa . 1987. Foraging behaviour and echolocation in the rufus horseshoe bat (Rhinolophus rouxi) of Sri Lanka. Behavioural Ecology and Sociobiology, 20: 53–67. Google Scholar
  • 34. M. J. O'Farrell , and B. W. Miller . 1997. A new examination of echolocation calls of some neotropical bats (Emballonuridae and Mormoopidae). Journal of Mammalogy, 78: 954–963. Google Scholar
  • 35. S. Parsons , and G. Jones . 2000. Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks. Journal of Experimental Biology, 203: 2641–2656. Google Scholar
  • 36. D. G. Preatoni , M. Nodari , R. Chirichella , G. Tosi , L. A. Wauters , and A. Martinoli . 2005. Identifying bats from time-expanded recordings of search calls: comparing classification methods. Journal of Wildlife Management, 69: 1601–1614. Google Scholar
  • 37. G. P. Quinn , and M. J. Keough . 2002. Experimental design and data analysis for biologists, 1st edition. Cambridge University Press, Cambridge, 562 pp Google Scholar
  • 38. J. M. Russ , K. Bennett , K. Ross , and A. Kofoky . 2003. The bats of Madagascar updated: a field guide with descriptions of echolocation calls. Viper Press, Glossop, UK, 96 pp. Google Scholar
  • 39. D. Russo , and G. Jones . 2002. Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time-expanded recordings of echolocation calls. Journal of Zoology (London), 258: 91–103. Google Scholar
  • 40. D. Russo , G. Jones , and M. Mucedda . 2001. Influence of age, sex, and body size on echolocation calls of Mediterranean and Mehely's horseshoe bats, Rhinolophus euryale and R. mehelyi (Chiroptera: Rhinolophidae). Mammalia, 65: 429–36. Google Scholar
  • 41. J. Rydell , H. T. Arita , M. Santos , and J. Granados . 2002. Acoustic identification of insectivorous bats (order Chiroptera) of Yucatan, Mexico. Journal of Zoology (London), 257: 27–36. Google Scholar
  • 42. H.-U. Schnitzler , and E. K. V. Kalko . 1998. How echolocating bats search and find food. Pp. 183–195 in Bat biology and conservation ( T. H. Kunz , and P. A. Racey , eds.) Smithsonian Institution Press, Washington, D.C., 365 pp. Google Scholar
  • 43. B. M. Siemers , and H.-U. Schnitzler . 2004. Echolocation signals reflect niche differentiation in five sympatric congeneric bat species Nature 429: 657–661. Google Scholar
  • 44. B. M. Siemers , E. K. V. Kalko , and H.-U. Schnitzler . 2001. Echolocation and signal plasticity in the Neotropical bat Myotis nigricans (Schinz, 1821) (Vespertilionidae): a convergent case with European species of Pipistrellus? Behavioural Ecology and Sociobiology, 50: 317–328. Google Scholar
  • 45. N. B. Simmons 2005. Order Chiroptera. Pp. 312–529, in Mammal species of the World: a taxonomic and geographic reference, 3rd edition ( D. E. Wilson and D. M. Reeder , eds.). Johns Hopkins University Press, Baltimore, 2142 pp. Google Scholar
  • 46. N. B. Simmons , and R. S. Voss . 1998. The mammals of Paracou, French Guiana: a Neotropical lowland rainforest fauna part 1. Bats. Bulletin of the American Museum of Natural History, 237: 1–219. Google Scholar
  • 47. W. Thies , E. K. V. Kalko , and H.-U. Schnitzler . 1998. The roles of echolocation and olfaction in two Neotropical fruit-eating bats, C. perspicillata and C. castanea, feeding on Piper. Behavioural Ecology and Sociobiology, 42: 397–409. Google Scholar
  • 48. M. D. Tuttle , and M. J. Ryan . 1981. Bat predation and the evolution of frog vocalisations in the Neotropics. Science, 214: 677–678. Google Scholar
  • 49. N. Vaughan , G. Jones , and S. Harris . 1997. Habitat use by bats (Chiroptera) assessed by means of broad-band acoustic method. Journal of Applied Ecology, 34: 716–730. Google Scholar
  • 50. D. A. Waters , and G. Jones . 1995. Echolocation call structure and intensity in 5 species of insectivorous bats. Journal of Experimental Biology, 198: 475–489. Google Scholar
  • 51. M. Weinbeer , and E. K. V. Kalko . 2004. Morphological characteristics predict alternate foraging strategy and microhabitat selection in the orange-bellied bat, Lampronycteris brachyotis. Journal of Mammalogy, 85: 1116–1123. Google Scholar

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-7b3747db-caa6-4c0a-b5f5-9c08425bcead
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.