PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2010 | 45 | 2 |

Tytuł artykułu

Water-borne hyphomycetes in tree canopies of Kaiga (Western Ghats), India

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The canopy samples such as trapped leaf litter, trapped sediment (during summer), stemflow and throughfall (during monsoon) from five common riparian tree species (Artocarpus heterophyllus, Cassia fistula, Ficus recemosa, Syzygium caryophyllatum and Xylia xylocarpa) in Kaiga forest stand of the Western Ghats of southwest India were evaluated for the occurrence of water-borne hyphomycetes. Partially decomposed trapped leaf litter was incubated in bubble chambers followed by filtration to assess conidial output. Sediments accumulated in tree holes or junction of branches were shaken with sterile leaf disks in distilled water followed by incubation of leaf disks in bubble chamber and filtration to find out colonized fungi. Stemflow and throughfall samples were filtered directly to collect free conidia. From five canopy niches, a total of 29 water-borne hyphomycetes were recovered. The species richness was higher in stemflow and throughfall than trapped leaf litter and sediments (14-16 vs. 6-10 species). Although sediments of Syzygium caryophyllatum were acidic (5.1), the conidial output was higher than other tree species. Stemflow and throughfall of Xylea xylocarpa even though alkaline (8.5-8.7) showed higher species richness (6-12 species) as well as conidial load than rest of the tree species. Flagellospora curvula and Triscelophorus acuminatus were common in trapped leaf litter and sediments respectively, while conidia of Anguillospora crassa and A. longissima were frequent in stemflow and throughfall. Diversity of water-borne hyphomycetes was highest in throughfall of Xylea xylocarpa followed by throughfall of Ficus recemosa. Our study reconfirms the occurrence and survival of diverse water-borne hyphomycetes in different niches of riparian tree canopies of the Western Ghats during wet and dry regimes and predicts their possible role in canopy as saprophytes, endophytes and alternation of life cycle between canopy and aquatic habitats.

Wydawca

-

Czasopismo

Rocznik

Tom

45

Numer

2

Opis fizyczny

p.185-195,fig.,ref.

Twórcy

  • Department of Biosciences, Mangalore University Mangalagangotri, Mangalore IN-574-199, India
autor

Bibliografia

  • Ando K., Tubaki K. 1984. Some undescribed hyphomycetes in the rain drops from intact leaf-surface. Transactions of the Mycological Society of Japan 25: 21–37.
  • APHA. 1995. Standard Methods in Examination of Water and Waste Water. American Public Health Association, USA.
  • Bärlocher F. 1987. Aquatic hyophomycete spora in 10 streams of New Brunswick and Nova Scotia. Canadian Journal of Botany 65: 76–79.
  • Barron G. L. 1991. A new species of Dwayaangam parasitic on eggs of rotifers and nematodes. Canadian Journal of Botany 69: 1402–1406.
  • Belliveau M. J.-R., Bärlocher F. 2005. Molecular evidence confirms multiple origins of aquatic hyphomycetes. Mycological Research 109: 1407–1417.
  • Carroll G. C., Carroll, F. E., Pike, L. H., Perkins, J. R., Sherwood M. 1980. Biomass and distribution patterns of conifer twig microepiphytes in a Douglas-fir forest. Canadian Journal of Botany 58: 624–630.
  • Chandrashekar K. R., Sridhar K. R., Kaveriappa K. M. 1990. Periodicity of water-borne hyphomycetes in two streams of Western Ghat forests (India). Acta Hydrochimica et Hydrobiologica 18: 187–204.
  • Chandrashekar K. R. Sridhar K. R., Kaveriappa K. M. 1991. Aquatic hyphomycetes of a sulphur spring, India. Hydrobiologia 218: 151–156.
  • Czeczuga B., Orłowska M. 1997. Hyphomycetes fungi in rainwater falling from building roofs. Mycoscience 38: 447–450.
  • Czeczuga B., Orłowska M. 1998a. Hyphomycetes in rain water draining from intact trees. Roczniki Akademii Medycznej w Białymstoku 43: 66–84.
  • Czeczuga B., Orłowska M. 1998b. Hyphomycetes in the snow from gymnosperm trees. Roczniki Akademii Medycznej w Białymstoku 43: 85–94.
  • Czeczuga B., Orłowska M. 1999. Hyphomycetes in rainwater, melting snow and ice. Acta Mycol. 34: 181–200.
  • Field J. I., Webster J. 1983. Anaerobic survival of aquatic fungi. Transactions of the British Mycological Society 81: 365–369.
  • Gönczöl J., Révay Á. 2003. Treehole fungal communities: aquatic, aero-aquatic and dematiaceous hyphomycetes. Fungal Diversity 12: 19–24.
  • Gönczöl J., Révay Á. 2004. Fungal spores in rainwater: stemflow, throughfall and gutter conidial assemblages. Fungal Diversity 16: 67–86.
  • Gönczöl J., Révay Á. 2006. Species diversity of rainborne hyphomycete conidia from living trees. Fungal Diversity 22: 37–54.
  • Gulis V., Marvanová L., Descals E. 2005. An illustrated key to the common temperate species of aquatic hyphomycetes. (In:) M. A. S. Graça, F. Bärlocher, M. O. Gessner (eds). Methods to Study Litter Decomposition: a Practical Guide. Springer, Dordrecht: 153–167.
  • Hedger J. 1990. Fungi in the tropical forest canopy. The Mycologist 4: 200–202.
  • Ingold C. T. 1975a. An Illustrated Guide to Aquatic and Water-Borne Hyphomycetes (Fungi Imperfecti) with Notes on their Biology. Freshwater Biological Association Scientific Publication # 30, Ambleside, UK.
  • Ingold C. T. 1975b. Convergent evolution in aquatic fungi: the tetraradiate spore. Botanical Journal of Linnean Society 7: 1–25.
  • Karamchand K. S. 2008. Studies on Freshwater Filamentous Fungi of Western Ghats and West Coast of India. Ph.D. Thesis, Mangalore University, India.
  • Karamchand K. S., Sridhar K. R. 2008. Water-borne conidial fungi inhabiting tree holes of the west coast and Western Ghats of India. Czech Mycology 60: 63–74.
  • Karamchand K. S., Sridhar K. R. 2009. Association of water-borne conidial fungi with epiphytic tree fern (Drynaria quercifolia). Acta Mycol. 44 (1): 19–27.
  • Liew E. C. Y., Aptroot A., Hyde K. D. 2002. An evolution of the monophyly of Massarina based on ribosomal DNA sequences. Mycologia 94: 803–813.
  • Lodge D., Cantrell S. 1995. Fungal communities in wet tropical variation in time and space. Canadian Journal of Botany 73: 1391–1398.
  • Magurran A. E. 1988. Ecological Diversity and its Measurement. Princeton University Press, New Jersey
  • Magyar D., Gönczöl J., Révay Á., Grillenzoni F., Seijo-Coello M. D. C. 2005. Stauro- and scolecoconidia in floral and honeydew honeys. Fungal Diversity 20: 103–120.
  • Marvanová L. 1997. Freshwater hyphomycetes: a survey with remarks on tropical taxa. (In:) K. K. Janardhanan, C. Rajendran, K. Natarajan, D. L. Hawksworth (eds). Tropical Mycology. Science Publishers, New York: 169–226.
  • Medeiros A. O., Pascoal C., Graça M. A. S. 2009. Diversity and activity of aquatic fungi under low oxygen conditions. Freshwater Biology 54: 142–149.
  • Nadkarni, N. M., Mewin M. C., Niedert J. 2001. Forest canopies, plant diversity. (In:) Encyclopedia of Biodiversity, Volume 3, Academic Press, New York: 27–40.
  • Nawawi A. 1985. Aquatic hyphomycetes and other water-borne fungi from Malaysia. Malaysian Nature Journal 39: 75–134.
  • Pielou F. D. 1975. Ecological Diversity. Wiley InterScience, New York.
  • Rajashekhar M., Kaveriappa K. M. 2003. Diversity of aquatic hyphomycetes in the aquatic ecosystems of the Western Ghats of India. Hydrobiologia 501: 167–177.
  • Raviraja N. S., Sridhar K. R. and Bärlocher F. 1998. Fungal species richness in Western Ghat streams (Southern India; is it related to pH, temperature or altitude? Fungal Diversity 1: 179–191.
  • Selosse M., Vohník M., Chauvet E. 2008. Out of the rivers: Are some aquatic hyphomycetes plant endophytes? New Phytologist 178: 3–7.
  • Shaw D. C. 2004. Vertical organization of canopy biota. (In:) M.D. Lowman, H.B. Rinker (eds). Forest Canopies. Elsevier Academic Press, London: 73–101.
  • Sivichai S., Jones E. B. G. 2003. Teleomorphic-anamorphic connections of freshwater fungi. (In:) C.K.M. Tsui, K. D. Hyde (eds). Freshwater Mycology. Fungal Diversity Series 10: 259–274.
  • Sivichai S., Jones E.B.G., Hywel-Jones N.L. 2002. Lignicolous freshwater higher fungi with reference to their teleomorph and anamorph stages. (In:) R. Watling, J. C. Frankland, A. M. Ainsworth, S. Isaac, C. H. Robinson (eds). Tropical Mycology. CAB International, UK, 41–49.
  • Sokolski S., Piché Y., Chauvet E., Bérubé J. A. 2006. A fungal endophyte of black spruce (Picea mariana) needles is also an aquatic hyphomycete. Molecular Ecology 15: 1955–1962.
  • Sridhar K. R. 2009. Fungi in the tree canopy – An appraisal. (In:) M. Rai, P. Bridge (eds). Applied Mycology. CAB International, UK: 73–91.
  • Sridhar K. R., Karamchand K. S. 2009. Diversity of water-borne fungi in throughfall and stemflow of tree canopies in India. Sydowia 61: 327–344.
  • Sridhar K. R., Kaveriappa K. M. 1989. Observations on aquatic hyphomycetes of the Western Ghat streams, India. Nova Hedwigia 49: 455–467.
  • Sridhar K. R., Chandrashekar K. R., Kaveriappa K. M. 1992. Research on the Indian subcontinent. (In:) F. Bärlocher (ed.). The Ecology of Aquatic Hyphomycetes. Springer-Verlag, Heidelberg: 182–211.
  • Sridhar K. R., Karamchand K. S., Bhat R. 2006. Arboreal water-borne hyphomycetes with oak-leaf basket fern Drynaria quercifolia. Sydowia 58: 309–320.
  • Sridhar K. R. Bärlocher F., Wennrich R., Krauss G.-J., Krauss G. 2008. Fungal biomass and diversity in sediments and on leaf litter in heavy metal contaminated waters of Central Germany. Fundamental and Applied Limnology 171: 63–74.
  • Stone J. F., Sherwood M. A., Carroll G. C. 1996. Canopy microfungi: function and diversity. Northwest Science 70: 37–45.
  • Webster J. 1992. Anamorph-teleomorph relationships. (In:) F. Bärlocher (ed.). The Ecology of Aquatic Hyphomycetes. Springer-Verlag, Berlin: 99–117.
  • Webster J., Descals E. 1979. The teleomorphs of water-borne hyphomycetes from freshwater. (In:) B. Kendrick (ed.). The Whole Fungus. National Museums of Canada, Ottawa: 419–447.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-6f6152cd-21e4-4db9-8c17-1318cbe803d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.