PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 66 | 07 |

Tytuł artykułu

Wybrane zagadnienia dotyczace procesów kostnienia i ich zaburzeń u ptaków

Warianty tytułu

EN
Selected problems related to ossification processes and their disorders in birds

Języki publikacji

PL

Abstrakty

EN
The aim of this study is to present selected issues concerning highly complex mechanisms regulating processes of ossification (formation of bone) and the remodeling of bones in poultry as well as to discuss the influence of various factors of the breeding and feeding environment on the development of diseases of the skeletal system, so often diagnosed in poultry practice. The bone tissue is comprised of large amounts of extracellular matter - consisting of organic matrix and bone mineral which is synthesized, maintained and remodeled by three types of cells: osteoblasts, osteocytes, osteoclasts. These cells, along with their receptors for many hormones (PTH, calciferol, glycocorticosterides, sex hormones, iodotyronines, GH and its matabolites) and cytokines (PGE₂, IL-1, IL-3, IL-6, IL-11, TGF-β, TNF) as well as numerous synthesized enzymes known as their biochemical markers, play the main role in the metabolism of bone tissue. Osteoclastogenesis involves three groups of factors: RANK receptor located in the cell membrane of osteoclasts and their precursors, osteoprotegrin (OPG) and the ligand for RANK (RANK/OPGL) receptor anchored in the cell membrane of osteoblasts or cells of the bone marrow stroma. Adrenergic impulses, the concentration of calcium ions, IL-6, TGF-β, leptin, PTH, calciferol and glucocorticoids also play a significant role. Organic matrix (mainly synthesized by osteoblasts) that constitutes about 20% of bone dry weight is made of collagen (80-90%), noncollagenous proteins (5-10%), and a small amount of proteoglicans and glycoproteines. The rest of bone dry weight is bone mineral, which is mainly composed of calcium phosphates in the form of hydroxyapatite crystals, and provides stiffness and compressional strength to the bone. Collagen is the main component of the organic matrix, contributing to the tensile strength of bone and providing oriented support to the mineral matrix. The arrangements of collagen fibers in bone with respect to the bone axis can also influence its strength. In the intensive breeding conditions, where birds grow very fast, osteogenesis and bone rebuilding processes - owing to their unusual complexity - may be disturbed by numerous factors related to the technology of breeding and feeding as well as to pathological conditions of various organs. Skeletal development in birds depends on their physical activity, bioavailability of Ca, P, Zn, Cu, Mg, Mn, Se, biotin, vitamins D, E, C and B in food, high level of metionin in relation to vitamin B₆, quality of lipid acids Ω6:Ω3, fat quality, presence of mikotoxins, cadm contaminations as well as pathological conditions of the intestinal mucous membrane. The appropriate balance of cations (Ca, Mg, Na and K) and anions (PO₄, SO₄ and Cl) in food and tissues is necessary for the homeostasis of the organism. Owing to the fact that bone tissue is a huge “container” of mineral elements and easily exchanged ions, it plays a major role in maintaining the water-electrolyte and acid-base balance of the organism. In a bird breeding environment, this balance can be easily disturbed by, for instance, a high ammoniac concentration and hyperthermia, which lead to disorders in expelling CO₂ and, in consequence, to respiratory acidosis and disorders in bone mineralization. Also an excess of protein and exogenous aminoacids in food can result in methabolic acidosis and an increased Ca loss, which leads to osteopathy.

Wydawca

-

Rocznik

Tom

66

Numer

07

Opis fizyczny

s.464-469,rys.,bibliogr.

Twórcy

  • Katedra Chorób Ptaków, Wydział Medycyny Weterynaryjnej, Uniwersytet Warmińsko-Mazurski w Olsztynie, ul.Oczapowskiego 13, 10-957 Olsztyn
autor
autor

Bibliografia

  • 1.Aarden E. M., Nijweide P. J., Plas A. van der, Alblas M. J., Mackie E. J., Horton M. A., Helfrich M. H.: Adhesive properties of isolated chick osteocytes in vitro. Bone 1996, 18, 305-313.
  • 2.Badurski J. E.: Choroby metaboliczne kości. Borgis, Warszawa 2005.
  • 3.Bains B. S., Brake J. T., Pardue S. L.: Reducing leg weakness in commercial broilers. World Poult. 1998, 14, 24-27.
  • 4.Barak-Shalom T., Schickler M., Knopov V., Shapira R., Hurwitz S., Pines M.: Synthesis and phosphorylation of osteopontin by avian epiphyseal growth-plate chondrocytes as affected by differentiation. Comp. Biochem. Physiol. 1995, 1, 49-59.
  • 5.Bieńko M., Radzki R. P., Puzio I., Kapica M., Studziński T.: Gęstość mineralna tkanki kostnej oraz poziom osteokalcyny u kurcząt brojlerów w następstwie intoksykacji siarczanem glinu. Medycyna Wet. 2005, 61, 562-566.
  • 6.Ferket P. R., Oviedo E. O., Powell K. C.: Solving leg problems in turkeys. XXIII World's Poultry Congress, Brisbane, Australia, 30 June - 4 July, 2008, s. 1-10.
  • 7.Fleming R. H., McCormack H. A., McTeir L., Whitehead C. C.: Relationships between genetic, environmental and nutritional factors influencing osteoporosis in laying hens. British Poultry. Sci. 1996, 47, 742-755.
  • 8.Gay C. V., Gilman V. R., Sugiyama T.: Perspectives on osteoblast and osteoclast function. Poultry. Sci. 2000, 79, 1005-1008.
  • 9.Heaney R. P.: Excess dietary protein may not adversely effect bone. J. Nutrit. 1998, 128, 1054-1057.
  • 10.Knopov V., Leach R. M., Barak-Shalom T., Hurwitz S., Pines M.: Osteopontin gene expression and alkaline phosphatase activity in avian tibial dyschondroplasia. Bone 1995, 16, 4, 329-334.
  • 11.Koncicki A., Jankowski J., Rafalski R., Bukowska A., Krasnodębska-Depta A., Mazur-Gonkowska B.: Wpływ zróżnicowanego poziomu białka i aminokwasów w paszy na zdrowotność i produkcyjność indyków rzeźnych. Medycyna Wet. 2004, 60, 62-65.
  • 12.Kong Y.-Y., Feige U., Sarosie I., Bolon B., Tafuri A., Morony S., Capparelli C., Li J., Elliott R., McCabe S., Wong T., Campagnuolo G., Moran E., Bogoch E. R., Van G., Nguyen L. T., Ohashi P. S., Lacey D. L., Fish E., Boyle W. J., Penninger J. M.: Activated T cells regulate bone loss and joint destraction in adjuvant arthritis throung osteoprolegerin ligand. Nature 1999, 402, 304-309.
  • 13.Krasnodębska-Depta A., Koncicki A.: Physiological values of selected serum biochemical indices in chickens. Polish J. Vet. Sci. 1999, 2, 49-57.
  • 14.Krasnodębska-Depta A., Koncicki A.: Wpływ krótkotrwałego stresu cieplnego na wybrane wskaźniki biochemiczne krwi indyków. Medycyna Wet. 2002, 58, 223-225.
  • 15.Krasnodębska-Depta A., Koncicki A., Rumińska-Groda E., Mazur-Gonkowska B.: Wpływ krótkotrwałego stresu cieplnego na temperaturę ciała i równowagę kwasowo-zasadową u indyków. Medycyna Wet. 2001, 57, 902-904.
  • 16.Leach R. M., Richards M. P., Praul C. A., Ford B. C., McMurtry J. P.: Investigation of the insulin-like growth factor system in the avian epiphyseal growth plate. Domestic Animal Endocrinol. 2007, 33, 143-153.
  • 17.Leeson S., Diaz G., Summers J. D.: Poultry metabolic disorders and mycotoxins. University books, Guelph, Ontario, Canada 1995.
  • 18.Ling J., Kincaid S. A., McDaniel G. R., Bartels J. E., Johnstone B.: Immunohistochemical study of a chondroitin-6-sulfate in growth plates of broiler chickens with high and low genetic predispositions to tibial dyschondroplasia. Avian Dis. 1996, 40, 88-98.
  • 19.Nakamura H., Yamada M., Fukae M., Ozawa H.: The localization of CD44 and moesin in osteoclasts after calcitonin administration in mouse tibiae. J. Bone Miner. Metab. 1997, 15, 184-192.
  • 20.Pines M., Knopov V., Genina O., Hurwitz S., Faerman A., Gerstenfeld L. C., Leach R. M.: Development of avian tibial dyschondroplasia: gene expression and protein synthesis. Calcif. Tiss. Int. 1998, 63, 521-527.
  • 21.Radzki R. P., Bieńko M., Puzio I., Filip R., Kapica M., Studziński T.: Wpływ flutamidu i testosteronu na cechy wytrzymałościowe, architektoniczne oraz gęstość mineralną kości udowej i ramiennej kurcząt brojlerów. Medycyna Wet. 2004, 60, 1222-1226.
  • 22.Rath N. C., Balog J. M., Huff W. E., Huff G. R., Kulkarni G. B., Tierce J. F.: Comparative differences in the composition and biomechanical properties of tibiae of seven- and seventy-two-week-old male and female broiler breeder chickens. Poultry Sci. 1999, 78, 1232-1239.
  • 23.Rath N. C., Huff G. R., Huff W. E., Balog J. M.: Factors regulating bone maturity and strength in poultry. Poultry Sci. 2000, 79, 1024-1032.
  • 24.Riczu C. M., Saunders-Blades J. L., Yngvesson A. K., Robinson F. E., Korver D. R.: End-of-cycle bone quality in white- and brown-egg laying hens. Poultry Sci. 2004, 83, 375-383.
  • 25.Rodan G. A., Martin T. J.: Role of osteoblasts in hormonal control of bone resorption: a hypothesis. Calcified Tissue Int. 1981, 33, 349-351.
  • 26.Takeda S., Elefterion F., Levasseur R., Lin X., Zhao L., Parker K. L., Armstrong D., Ducy P., Karsenty G.: Leptin regulates bone formation via the sympathetic nervous system. Cell 2002, 111, 305-317.
  • 27.Tatara M. R., Sierant-Rożmiej N., Krupski W., Majcher P., Śliwa E., Kowalik S., Studziński T.: Zastosowanie ilościowej tomografii komputerowej w ocenie mineralizacji kości udowej i piszczelowej indyka. Medycyna Wet. 2005, 61, 225-228.
  • 28.Teitelbaum S. L., Abu-Amer Y., Ross F. P.: Molecular mechanisms of bone resorption. J. Cell. Biochem. 1995, 59, 1-10.
  • 29.Tojo H., Huston T. M.: Effects of enviromental temperature on the concentration of serum estradiol, progesterone, and calcium in maturing female domestic fowl. Poultry Sci. 1980, 59, 2797-2902.
  • 30.Urist M. R.: Bone: formation by autoinduction. Science 1965, 159, 893-899.
  • 31.Waldenstedt L.: Nutritional factors of importance for optimal leg health in broilers: a review. Anim. Feed Sci. Technol. 2006, 126, 291-307.
  • 32.Weinstein R. S., Jilka R. L., Parfitt A. M., Manolagas S. C.: Inhibition of osteoclastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanism of their deleterious effects on bone. J. Clin. Invest. 1998, 102, 274-282.
  • 33.Whitehead C. C., Keller T.: An uptade on ascorbic acid in poultry. World's Poultry Sci. J. 2003, 59, 161-182.
  • 34.Yasuda H., Shima N., Nakagawa N., Mochizuki S. I., Yano K., Fujise N., Sato Y., Goto M., Yamaguchi K., Kuriyama M., Kanno T., Murakami A., Tsuda E., Morinaga T., Higashio K.: Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinol. 1998, 139, 1329-1337.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-5f5ed568-711a-425a-84e1-cc9d7dabc5d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.