PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 20 | 3 |

Tytuł artykułu

Applicability of functional groups concept in analysis of spatiotemporal vegetation changes on manmade habitats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The immense variety in plant diversity at the species level might explain why it is so difficult to establish strict generalizations in vegetation dynamics. In the last two decades many published research reports have shown that the introduction of the concept of plant functional groups (PEG) into the analysis of vegetation dynamics might be more informative in explaining spatiotemporal changes of vegetation than analysis based only on species composition. The spontaneous vegetation development observed on post-industrial manmade habitats (coal-mine heaps in the Silesian Upland, southern Poland), which are different in age provide an excellent opportunity to study the changes of participation of species representing the analyzed PFG. In this study a vast range of life history features were taken into account in order to find which of them are the most explicable (not redundant) in terms of changes in species composition in time during vegetation development. The study showed that during vegetation development in manmade habitats some features undergo variation over time and their importance depends on the developmental phase of succession/colonization processes. The results revealed that the most explanatory PFG’s are plant height, leaf shape and area, root system, seed weight, and photosynthetic pathway. It is impossible to recommend one closed set of species feature categories to provide the best explanation of spatiotemporal changes of vegetation on manmade habitats during all developmental stages, because the significance of a different plant’s features varies in the following phases of vegetation development.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

3

Opis fizyczny

p.623-631,fig.,ref.

Twórcy

autor
  • Department of Geobotany and Nature Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
autor
autor
autor

Bibliografia

  • 1. KOTAŃSKA M. Response of wet meadows of the Calthion alliance to variations of weather and management practices – a thirteen-year study of permanent plots. Studia Naturae 40, 1, 1993.
  • 2. HOLEKSA J. Breakdown of tree and spruce regeneration versus structure and dynamics of a Carpathian subalpine spruce forest. Mon. Bot. 82, 1, 1998 [In Polish].
  • 3. BAZZAZ F.A. Plants in Changing Environments: Linking Physiological, Population and Community Ecology. Cambridge University Press, Cambridge. pp. 1-332, 1996.
  • 4. PICKETT S.T.A. Population patterns through twenty years of oldfield succession. Vegetatio 49, 45, 1982.
  • 5. VITOUSEK P.M. Biological invasions and ecosystem properties: can species make a difference? [In]: Mooney H.A., Drake J.A. (Eds.) Ecology of Biological Invasions of North America and Hawaii. Springer-Verlag, New York, pp. 163-178, 1986.
  • 6. MYSTER R.W., PICKETT S.T.A. A comparison of the rate of succession over 18 yr in 10 contrasting old fields. Ecology 75, 387, 1994.
  • 7. ODUM E.P. Fundaments of Ecology. PWRiL. Warszawa. 1982 [In Polish].
  • 8. HORN H.S. The ecology of secondary succession. Ann. Rev. Ecol. Evol. 4067, 25, 1974.
  • 9. SARMIENTO L., LLAMBI L.D., ESCALONA A., MARQUEZ N. Vegetation patterns, regeneration rates and divergence in an old-field succession in the high tropical Andes. Plant Ecol. 166, 63, 2003.
  • 10. DIAZ S., CABIDO M. Plant functional types and ecosystem function in relation to global change. J. Veg. Sci. 8, 463, 1997.
  • 11. DUCKWORTH J.C., KENT M., RAMSAY P.M. Plant functional types: an alternative to taxonomic plant community description in biogeography? Progress in Physical Geography 24, 515, 2000.
  • 12. KAHMEN S., POSCHLOD P. Plant functional traits responses to grassland succession over 25 years. J. Veg. Sci. 15, 21, 2004.
  • 13. POKORNY M.L., SHELEY R.L., ZABINSKI C.A., ENGEL R.E., SVEJCAR T.J., BORKOWSKI J.J. Plant functional group diversity as a mechanism for invasion resistance. Res.Ecol. 13, 448, 2005.
  • 14. CABAŁA S. SYPIEŃ B. Development of vegetation on the coal mine spoil heaps of the Upper Silesian industrial region. Arch. Ochr. Środ. 3-4, 169, 1987 [In Polish].
  • 15. ROSTAŃSKI A. Summary of the research on vascular flora of post-industrial sites on the area of Upper Silesia (1989- 1999). Acta Biol. Sil. 35, (52), 131, 2000 [In Polish].
  • 16. ROSTAŃSKI A. Spontaneous plant cover on colliery spoil heaps in Upper Silesia (Southern Poland). Wydawnictwo Uniwersytetu Śląskiego. Katowice, pp. 230, 2006 [In Polish].
  • 17. ROSTAŃSKI A., WOŹNIAK G. Grasses (Poaceae) on post-industrial waste sites in course of spontaneous succession. Fragm. Flor. Geobot. Polonica Supplement 9, 31, 2007 [In Polish].
  • 18. WOŹNIAK G. Diversity of vegetation on coal-mine heaps of the Upper Silesia (Poland). Szafer Institute of Botany, Polish Academy of Science, Kraków, 2010.
  • 19. CHESSON P. Mechnisms of maintanance of species diversity. Ann. Rev. Ecol. Syst. 31, 343, 2000.
  • 20. HUNT R., HODGSON J.G., THOMPSON K., BUNGENER P., DUNNET N.P., ASKEW A.P. A new practical tool for deriving a functional signature for herbaceous vegetation. Appl. Veg. Sci. 7, 163, 2004.
  • 21. DIAZ S., CABIDO M. Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646, 2001.
  • 22. LAVOREL S., MCINTYRE S., LANDSBERG J., FORBES T.D.A. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol. Evol. 12, 475, 1997.
  • 23. PEREZ M., URCELAY C. Differential growth response to arbuscular mycorrhizal fungi and plant density in two wild plants belonging to contrasting functional types. Mycorrhiza 19, 517, 2009.
  • 24. WANG R.Z. Photosynthetic and morphological functional types from different steppe communities in Inner Mongolia. North China. Photosynthetica 42, (4), 493, 2004.
  • 25. DOMINGUES T.F., MARTINELLI L.A., EHLERINGER J.R. Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazonia. Brazil. Plant Ecol 193, 101, 2007.
  • 26. LENIERE A., HOULE G. Short-term responses of the understory to the removal of plant functional groups in the cold-temperate deciduous forest. Plant Ecol. 201, 235, 2009.
  • 27. WANG R.Z. Plant functional types and their ecological responses to salinization in saline grasslands. Northeastern China. Photosynthetica 42, (4), 511, 2004.
  • 28. FITTER A .H., PEAT H.J. The ecological flora database. J. Ecol. 82, 415, 1994.
  • 29. http://www.ecoflora.co.uk (30.04.2009).
  • 30. DZWONKO Z., LOSTER S. A functional analysis of vegetation dynamics in abandoned and restored limestone grasslands. J. Veg. Sci. 18, 203, 2007.
  • 31. WEIHER E., van der WERFT A., THOMPSON K., RODERICK M., GARNIER E., ERIKSSON O. Challenging Theophrastus: a common core list of plant traits for functional ecology. J. Veg. Sci., 10, 609, 1999.
  • 32. BULLOCK J.M., FRANKLIN J., STEVENSON M.J., SILVERTOWN J., COULSON S.J., GREGORY S.J., TOFTS R. A 12-year grazing experiment on species-poor grassland: vegetation responses and correlation with plant traits. J. Appl. Ecol. 38, 253, 2001.
  • 33. GAUDET C.L., KEDDY P.A. A comparative approach to predicting competitive ability from plant traits. Nature 334, 242, 1988.
  • 34. MOOG D., KAHMEN S., POSCHLOD P. Application of CSR- and LHS- strategies for the distinction of differently managed grasslands. Basic and Applied Ecology 6, 133, 2005.
  • 35. CRAWLEY M.J. [Ed.] Plant Ecology. 2nd Ed. Blackwell Science. Oxford, 1997.
  • 36. NOY-MEIR I., GUTMAN M., KAPLAN Y. Responses of Mediterranean grassland plants to grazing and protection. J. Ecol. 77, 290, 1989.
  • 37. TRAISER C., KLOTZ S., UHL D., MOSBRUGGER V. Environmental signals from leaves – a physiognomic analysis of European vegetation. New Phytol. 166, 465, 2004.
  • 38. WESTOBY M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213, 1998.
  • 39. WILSON P. J., THOMPSON K., HODGSON J. G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategy. New Phytol. 143, 155, 1999.
  • 40. MOONEY H.A. The Carbon balance of plants. Ann. Rev. Ecol. Syst. 3, 315, 1972.
  • 41. BAZZAZ F.A. The physiological ecology of plant succession. Ann. Rev. Ecol. Syst. 10, 351, 1979.
  • 42. KEDDY P., NIELSEN K., WEIHER E., LAWSON R. Relative competitive performance of 63 species of terrestrial herbaceous plants. J. Veg. Sci. 13, 5, 2002.
  • 43. CRAINE J.M., FROEHLE J., TILMAN D.G., WEDIN D.A., CHAPIN F.S. III., The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93, 274, 2001.
  • 44. REES M., CONDIT R., CRAWLEY M., PACALA S, TILMAN D. Long-Term Studies of Vegetation Dynamics. Science 293, 650, 2001.
  • 45. CHAPIN F.S.I. Functional role of growth forms in ecosystem and global processes. In: J. R. Ehleringer, and C. B. Field, (Ed.). Scaling physiological processes: leaf to globe. Academic Press, San Diego, California. pp 287-312, 1993.
  • 46. LAMBERS, H.F.S. CHAPIN III, T.L. Pons. Plant physiological ecology. Springer-Verlag, New York, 1998.
  • 47. READER R.J. Control of seedling emergence by ground cover and seed predation in relation to seed size for some old-field species. J. Ecol. 81, 169, 1993.
  • 48. LAVOREL S., ROCHETTE C., LEBRETON J-D. Functional groups for response to disturbance in Mediterranean old fields. Oikos, 84, 480, 1999.
  • 49. GRIME J.P. Plant strategies, vegetation processes, and ecosystem properties. 2nd Edition. Wiley, Sons, Chichester, UK, pp. 456, 2002.
  • 50. LEISHMAN M. R. How well do plant traits correlate with establishment ability? Evidence from a study of 16 calcareous grassland species. New Phytol. 141, 487, 1999.
  • 51. KIDSON R., WESTOBY M. Seed mass and seedling dimensions in relation to seedling establishment. Oecologia 125, 11, 2000.
  • 52. WESTOBY M., FALSTER D.S., MOLES A.T., VESK P.A. WRIGHT I.J. Plant ecological strategies: some leading dimensions of variation between species. Ann. Rev. Ecol. Syst. 33, 125, 2002.
  • 53. MOLES A.T., WESTOBY M. Seedling survival and seed size: a synthesis of the literature. J. Ecol. 92, 372, 2004.
  • 54. ERIKSSON A., ERIKSSON O. Seedling recruitment in semi-natural pastures: the effects of disturbance, seed size, phenology and seed bank. Nord. J. Bot. 17, 469, 1997.
  • 55. SALISBURY E.J. Seed size and mass in relation to environment. Proceedings of the Royal Society of London B 186, 83, 1974.
  • 56. TURNBULL L. A., CRAWLEY M. J., REES M. Are plant populations seed-limited? A review of seed sowing experiments. Oikos 88, 225, 2000.
  • 57. JAKOBSSON A., ERIKSSON O. A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos 88, 494, 2000.
  • 58. TURNBULL L.A.M. REES M., CRAWLEY M.J. Seed mass and the competition/colonization trade-off: a sowing expriment J. Ecol. 87, 899, 1999.
  • 59. REES M. Community structure in sand dune annuals: is seed weight a key quality? J. Ecol. 83, 857, 1995.
  • 60. ERIKSSON O. Colonization dynamics and relative abundance of three plant species (Antennaria dioica, Hieracium pilosella and Hypochoeris maculata) in dry semi-natural grasslands. Ecography 20, 559, 1997.
  • 61. PRACH K., PYŠEK P. Clonal plants – what is their role in succession? Folia Geobot. Phytotax. 29, 307, 1994.
  • 62. JENSEN K. SCHRAUTZER J. Consequences of abandonment for a regional fen flora and mechanisms of successional change. Appl. Veg. Sci. 2, 79, 1999

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-5a178d4e-abb9-4de6-bd61-3b066cad040b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.