PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 50 | 4 |

Tytuł artykułu

Analysis of molecular variability among isolates of Aspergillus flavus by PCR-RFLP of the ITS regions of rDNA

Warianty tytułu

PL
Analiza molekularnej zmienności izolatów Aspergillus flavus przy wykorzystaniu regionów rDNA i techniki PCR-RFLP

Języki publikacji

EN

Abstrakty

EN
A total of seventeen isolates of Aspergillus flavus from maize were collected from different agro-ecological zones of Tamil Nadu, India. The isolates were tested for their ability to produce aflatoxin B1 (AFB1) in vitro by indirect competitive enzyme-linked immunosorbent assay (ELISA). The amount of AFB1 produced by the isolates of A. flavus ranged from 1.9 to 206.6 ng/ml. Among the various isolates of A. flavus, the isolate AFM46 produced the highest amount of AFB1. DNA was extracted from A. flavus isolates and their molecular variability was investigated by using restriction fragment length polymorphism (RFLP) analysis of the PCR-amplified internal transcribed spacer (ITS) regions of ribosomal DNA. PCR amplification with ITS1 and ITS4 primers resulted in the amplification of a product of approximately 600 bp. Digestion of the PCR products with the restriction enzymes EcoRI, HaeIII and TaqI produced fragments of different sizes. Analysis of the genetic coefficient matrix derived from the scores of RFLP profiles showed that minimum and maximum per cent similarities among the tested A. flavus strains ranged from 0 to 88%. Cluster analysis using the unweighted pair-group method with arithmetic average (UPGMA) clearly separated the isolates into five groups (group I–V) confirming the genetic diversity among the A. flavus isolates from maize.
PL
Zebrano ogółem siedemnaście izolatów Aspergillus flavus z kukurydzy, z różnych stref agro-ekologicznych Tamil Nadu, Indie. Badano zdolność izolatów do wytwarzania aflatoksyny B1 (AFB1) in vitro, wykorzystując pośredni test ELISA (enzymatyczny test immunosorbcyjny). Ilość wytworzonego AFB1 przez izolaty A. flavus wahała się w granicach od 1,9 do 26,6 mg/ml. Spośród różnych izolatów A. flavus, izolat AFM146 wytwarzał największą ilość AFB1. Ekstrahowano DNA z izolatów A. flavus i określano ich molekularną zmienność, wykorzystując analizę poliformizmu długości fragmentów restrykcyjnych (RLFP) regionów rybosomalnego DNA. Amplifikowanie DNA przy wykorzystaniu starterów ITS1 i ITS4, spowodowało amplifikację produktu wynoszącą, w przybliżeniu, 600 bp. Strawienie produktów PCR enzymami restrykcyjnymi EcoRI, HaeIII i TaqI, dało, w wyniku, fragmenty o różnych wartościach genetycznego współczynnika matrix, pochodzącego z ocen. Analiza profilów DNA wykazała, że minimalny i maksymalny procent podobieństwa wśród testowanych ras A. flavus wynosił od 0 do 88. Analiza skupień metodą para-grupa przy wykorzystaniu średniej arytmetycznej (UPGMA) wyraźnie dzieliła izolaty na pięć grup (grupy I–IV), potwierdzając genetyczną różnorodność wśród izolatów A. flavus z kukurydzy.

Wydawca

-

Rocznik

Tom

50

Numer

4

Opis fizyczny

p.446-451,fig.,ref.

Twórcy

  • Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore- 641 003, Tamil Nadu, India

Bibliografia

  • Appiah A. A., Flood J., Archer S. A., Bridge P. D. 2004. Molecular analysis of the major Phytophthora species on cocoa. Plant Pathol. 53: 209-219.
  • Bayman P., Cotty P. 1993. Genetic diversity in Aspergillus flavus: association with aflatoxin production and morphology. Can. J. Bot. 71 (1): 23-31.
  • Bennett J. W., Christensen S. B. 1983. New perspective of aflatoxin biosynthesis. Adv. Appl. Microbiol. 29: 53-92.
  • Bruns T. D., White T. J., Taylor J. W. 1991. Fungal molecular systematics. Annu. Rev. Ecol. Syst. 22: 525-564.
  • Cooke D. E. L., Duncan J. M. 1997. Phylogenetic analysis of Phytophthora species based on ITS1 and ITS2 sequences of ribosomal DNA. Mycol. Res. 101 (6): 667-677.
  • Cooke D. E. L., Kennedy D. M., Guy D. C., Russell J., Unkle S. E., Duncan J. M. 1996. Relatedness of group I species of Phytophthora as assessed by random amplified polymorphic DNA (RAPDs) and sequences of ribosomal DNA. Mycol. Res. 100 (3): 297-300.
  • Crawford A. R., Bassam B. J., Drenth A., MacLean D. J., Irwin J. A. G. 1996. Evolutionary relationships among Phytophthora species deduced from rDNA sequence analysis. Mycol. Res. 100 (4): 437-443.
  • Egel D. S., Cotty P. J., Elias K. S. 1994. Relationships among isolates of Aspergillus sect. Flavai that vary in aflatoxin production. Phytopathology 84 (9): 906-912.
  • Fatehi J., Bridge P. D. 1998. Detection of multiple rRNA-ITS regions in isolates of Ascochyta. Mycol. Res. 102 (6): 762-766.
  • Goodwin S. B., Zismann V. L. 2001. Phylogenetic analyses of the ITS region of ribosomal DNA reveal that Septoria passerinii from barley is closely related to the wheat pathogen Mycosphaerella graminicola. Mycologia 93 (5): 934-946.
  • Harlton C. E., Levesque C. A., Punja Z. K. 1995. Genetic diversity in Sclerotium (Athelia) rolfsii and related species. Mol. Plant Pathol. 85 (10): 1269-1281.
  • Henry T., Iwen P. C., Hinrichs S. H. 2000. Identification of Aspergillus species using Internal transcribed spacer regions 1 and 2. J. Clin. Microbiol. 38 (4): 1510-1515.
  • IARC. 1993. IARC-WHO Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 56: "Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. Int. Agency for Research on Cancer World Health Organization, 599 pp.
  • Karthikeyan M., Sandosskumar R., Mathiyazhagan S., Mohankumar M., Valluvaparidasan V., Kumar S., Velazhahan R. 2009. Genetic variability and aflatoxigenic potential of Aspergillus flavus isolates from maize. Arch. Phytopathol. Plant Protect. 42 (1): 83-91.
  • Khoodoo M. H. R., Jaufeerally-Fakim Y. 2004. RAPD-PCR fingerprinting and southern analysis of Xanthomonas axonopodis pv. dieffenbachiae strains isolated from different aroid hosts and locations. Plant Dis. 88 (9): 980-988.
  • Levy L., Castlebury L.A, Carris L. M., Meyer R. J., Pimentel G. 2001. Internal transcribed spacer sequence-based phylogeny and polymerase chain reaction-restriction fragment length polymorphism differentiation of Tilletia walkeri and T. indica. Mycology 91 (10): 935-940.
  • Liu D., Coloe S., Baird R., Pederson J. 2000. Rapid mini preparation of fungal DNA for PCR. J. Clin. Microbiol. 38, p. 471.
  • Lourenço A., Durigon E. L., Zanotto P., Madeira J. E. G. C., De Almeida A. P., Correa B. 2007. Genetic diversity of environmental Aspergillus flavus strains in the state of São Paulo, Brazil by random amplified polymorphic DNA. Memorias do Instituto Oswaldo Cruz 102: 687-692.
  • O'Donnell K., Cigelik E., Nirenberg H. I. 1998. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90 (3): 465-493.
  • Peterson S. W. 1991. Phylogenetic analysis of Fusarium species using ribosomal RNA sequence comparisons. Phytopathology 81 (9): 1051-1054.
  • Reddy S. V., Mayi D. K., Reddy M. U., Thirumala Devi K., Reddy D. V. 2001. Aflatoxins B1 in different grades of chillies (Capsicum annum L.) in India as determined by indirect competitive ELISA. Food Additiv. Contam. 18 (6): 553-558.
  • Salazar O., Schneider J. H. M., Julian M. C., Keijer J., Rubio V. 1999. Phylogenetic subgrouping of Rhizoctonia solani AG2 isolates based on ribosomal ITS sequences. Mycologia 91 (3): 459-467.
  • Seifert K. A., Wingfield B. D., Wingfield M. J. 1995. A critique of DNA sequence analysis in the taxonomy of filamentous ascomycetes and ascomycetous anamorphs. Can. J. Bot. 73 (1): 760-767.
  • Singh K., Frisvad J. C., Thrane U., Mathur S. B. 1991. An Illustrated Manual on Identification of Some Seed-Borne Aspergilli, Fusaria, Penicillia and Their Mycotoxins. Danish Government Institute of Seed Pathology for Developing Countries, Denmark, 133 pp.
  • Toth B., Mesterhazy A., Nicholson P., Teren J., Varga J. 2004. Mycotoxin production and molecular variability of European and American isolates of Fusarium culmorum. Eur. J. Plant Pathol. 110 (5-6): 587-599.
  • Tran-Dinh N., Pitt J. I., Carter D. A. 1999. Molecular genotype analysis of natural toxigenic and nontoxigenic isolates of Aspergillus flavus and Aspergillus parasiticus. Mycol. Res. 103 (11): 1485-1490.
  • van Egmond H. P. 1995. Mycotoxins: regulations, quality, assurance and reference materials. Food Additiv. Contam. 12 (3): 321-330.
  • White T. J., Bruns T., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. p. 315-322. In: "PCR Protocols: A Guide to Methods and Applications" (M. A. Innis, D. H. Gelfand, J. J. Sninsky, T. J. White, eds.). San Diego, CA: Academic Press
  • Zhang Z. G., Zhang J. Y., Zheng X. B., Yang Y. W., Ko W. H. 2004. Molecular distinctions between Phytophthora capsici and P. tropicalis based on ITS sequences of ribosomal DNA. J. Phytopathol. 152 (6): 358-364.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-4926d247-998a-4c4a-8af2-9c300cacb8e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.