PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 61 | 2 |

Tytuł artykułu

The MAPK-dependent regulation of the Jagged/Notch gene expression by VEGF, bFGF or PPAR gamma mediated angiogenesis in HUVEC

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Jagged-Notch signalling, plays a crucial role in cell differentiation. Angiogenesis, is regulated by VEGF, bFGF as well as by the free fatty acid metabolites , which are regulators of transcription factors such as peroxisome proliferation activating receptors (PPARs). The study analyzed the signalling pathways involved in the regulation of Jagged-1/Notch-4 expression in endothelial cells (HUVECs) in response to VEGF, bFGF and PPAR- exogenous activator - ciglitazone. HUVECs were incubated with investigated substances for 24 hours, with or without the presence of the MAP-kinases inhibitors were used. Jagged-1 and Notch-4 gene expression was determined using quantitative Real-Time PCR. The Jagged-1/Notch-4 protein expression was compared by flow cytometry, when the phosphorylation-dependent activation of kinases was estimated by Western-blot method. The opposite effect of VEGF, bFGF, or ciglitazone on the Jagged-1/Notch-4 expression on HUVEC was connected with the different activation of MAPKs. Ciglitazone, activated p38 MAPK pathway and simultaneously inhibited phosphorylation of p42/44 MAPK. The pro-angiogenic: bFGF and VEGF, also activated the p38 MAPK, but they did not attenuate the p42/44 MAPK phosphorylation. Maintaining of the Jagged/Notch interactions by VEGF, when down-regulation by bFGF and ciglitazone, seems to be dependent on the different effect on p38 MAPK and p42/44 MAPK pathway regulation.

Wydawca

-

Rocznik

Tom

61

Numer

2

Opis fizyczny

p.217-225,fig.,ref.

Twórcy

autor
  • Jagiellonian University Medical College, 15 Kopernika Street, 31-501 Krakow, Poland
autor
autor
autor

Bibliografia

  • Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671-674.
  • Chennazhi KP, Nayak NR. Regulation of angiogenesis in the primate endometrium: vascular endothelial growth factor. Semin Reprod Med 2009; 27: 80-89.
  • Kiec-Wilk B, Polus A, Mikolajczyk M, Mathers JC. Beta-carotene and arachidonic acid induced DNA methylation and the regulation of pro-chemotactic activity of endothelial cells and its progenitors. J Physiol Pharmacol 2007; 54: 757-766.
  • Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 2006; 312: 549-560.
  • Yu P, Passam FH, Yu DM, Denyer G, Krilis SA. Beta2-glycoprotein I inhibits vascular endothelial growth factor and basic fibroblast growth factor induced angiogenesis through its amino terminal domain. J Thromb Haemost 2008; 6(7): 1215-1223.
  • Goetze S, Bungenstock A, Czupalla C, et al. Leptin induces endothelial cell migration through Akt, which is inhibited by PPARgamma-ligands. Hypertension 2002; 40: 748-754.
  • Shono T, Kanetake H, Kanda S. The role of mitogen-activated protein kinase activation within focal adhesions in chemotaxis toward FGF-2 by murine brain capillary endothelial cells. Exp Cell Res 2001; 264: 275-283.
  • Ye J, Yuan L. Inhibition of p38 MAPK reduces tumor conditioned medium-induced angiogenesis in co-cultured human umbilical vein endothelial cells and fibroblasts. Biosci Biotechnol Biochem 2007; 71: 1162-1169.
  • Pisanti S, Borselli C, Oliviero O, Laezza C, Gazzerro P, Bifulco M. Antiangiogenic activity of the endocannabinoid anandamide: correlation to its tumor-suppressor efficacy. J Cell Physiol 2007; 211: 495-503.
  • Matsumoto T, Turesson I, Book M, Gerwins P, Claesson-Welsh L. p38 MAP kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF-2-stimulated angiogenesis. J Cell Biol 2002; 156: 149-160.
  • Dembinska-Kiec A, Polus A, Piatkowska E. Participation of Jagged/Notch gene expression in differentiation of endothelial cells. Proceedings of the 4th International Congress on Coronary Artery Disease 2001. Prague, 2001, pp. 169-175.
  • Bianchi S, Dotti MT, Federico A. Physiology and pathology of notch signalling system. J Cell Physiol 2006; 207: 300-308.
  • Phng LK, Gerhardt H. Angiogenesis: a team effort coordinated by notch. Dev Cell 2009; 16: 196-208.
  • Siekmann AF, Lawson ND. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 2007; 445: 781-784.
  • Dufraine J, Funahashi Y, Kitajewski J. Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene 2008; 27: 5132-5137.
  • Leong KG, Hu X, Li L, et al. Activated Notch4 inhibits angiogenesis: role of beta 1-integrin activation. Mol Cell Biol 2002; 22: 2830-2841.
  • Taylor KL, Henderson AM, Hughes CC. Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc Res 2002; 64: 372-383.
  • Dalainas I, Ioannou HP. The role of trans fatty acids in atherosclerosis, cardiovascular disease and infant development. Int Angiol 2008; 27: 146-156.
  • Olszanecki R, Gebska A, Korbut R. Production of prostacyclin and prostaglandin E2 in resting and IL-1beta-stimulated A549, HUVEC and hybrid EA.HY 926 cells. J Physiol Pharmacol 2006; 57: 649-660.
  • Villacorta L, Schopfer FJ, Zhang J, Freeman BA, Chen YE. PPAR and its ligands: therapeutic implications in cardiovascular disease. Clin Sci (Lond) 2009; 116: 205-218.
  • Goetze S, Eilers F, Bungenstock A, et al. PPAR activators inhibit endothelial cell migration by targeting Akt. Biochem Biophys Res Commun 2002; 293: 1431-1437.
  • Yang YC, Ho TC, Chen SL, Lai HY, Wu JY, Tsao YP. Inhibition of cell motility by troglitazone in human ovarian carcinoma cell line. BMC Cancer 2007; 7: 216.
  • Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254
  • Laemmli Tournier-Lasserve E. Protein electophoresis. Semin Cell Dev Biol 1998; 9: 619-625.
  • Ahluwalia A, Li A, Cheng G, Deng X, Tarnawski AS. Reduced ghrelin in endothelial cells plays important mechanistic role in aging-related impairment of angiogenesis. J Physiol Pharmacol 2009; 60: 29-34.
  • Kiec-Wilk B, Razny U, Mathers JC, Dembinska-Kiec A. DNA methylation, induced by beta-carotene and arachidonic acid, plays a regulatory role in the pro-angiogenic VEGF-receptor (KDR) gene expression in endothelial cells. J Physiol Pharmacol 2009; 60: 49-53.
  • Issbrucker K, Marti HH, Hippenstiel S, et al. p38 MAPkinase-a molecular switch between VEGF-induced angiogenesis and vascular hyperpermeability. FASEB J 2003; 17: 262-264.
  • Takeshita K, Satoh M, Ii M, et al. Critical role of endothelial Notch1 signaling in postnatal angiogenesis. Circ Res 2007; 100: 70-78.
  • Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 2000; 351: 95-105.
  • Idris I, Gray S, Donnelly R. Rosiglitazone and pulmonary oedema: acute dose-dependent effect on human endothelial cells permeability. Diabetology 2003; 46: 288-290.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-491935d9-3b36-41a7-8789-22c09a1128c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.