Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 80 | 2 |
Tytuł artykułu

Effects of alpha-aminooxyacetic acid on the level of polyamines, anthocyanins and photosynthetic pigments in seedlings of common buckwheat (Fagopyrum esculentum Moench)

Treść / Zawartość
Warianty tytułu
Języki publikacji
The present paper discusses the effects of α-aminooxyacetic acid (AOA) on contents of polyamines, anthocyanins, photosynthetic pigments and phenylalanine ammonia-lyase activity in seedlings of common buckwheat (Fagopyrum esculentum Moench). AOA clearly decreased light-induced formation of anthocyanins and inhibited PAL activity in buckwheat hypocotyls, although a slight stimulatory effect on anthocyanins content in buckwheat cotyledons was observed. AOA declined the contents of chlorophylls a and b, and total carotenoids in buckwheat cotyledons. The results show that AOA inhibits phenylpropanoids biosynthesis in buckwheat hypocotyls, and suppress photosynthesis in cotyledons. Moreover, the experiments show that AOA enhances the level of free putrescine in hypocotyls and the level of spermidine in buckwheat cotyledons. AOA also diminished the content of putrescine in cotyledons, but did not affect its level in buckwheat hypocotyls. AOA also substantially declined the level of cadaverine in buckwheat cotyledons, and did not affect its content in hypocotyls. Differences in effect of AOA on anthocyanins and polyamines accumulation indicate various physiological roles of the compounds in buckwheat hypocotyls and cotyledons.
Opis fizyczny
  • Institute of Biology, Department of Plant Physiology and Genetics, Siedlce University, Prusa 12, 08-100 Siedlce, Poland
  • AMRHEIN N. 1979. Biosynthesis of cyanidin in buckwheat hypocotyls. Phytochemistry 18: 585-589.
  • AMRHEIN N., GÖDEKE K.H. 1977. α-Aminooxy-β-phenylpropionic acid a potent inhibitor of L-phenylalanine ammonialyase in vitro and in vivo. Plant Sci. Lett. 8: 313-317.
  • AMRHEIN N. HOLLÄNDER H. 1979. Inhibition of anthocyanin formation in seedlings and flowers by the enantiomers of L-α- -aminooxy-β-phenylpropionic acid and their N-benzyloxycarbonyl dervivatives. Planta 144: 385-389.
  • AMRHEIN N., WENKER D. 1979. Novel inhibitors of ethylene production in higher plants Plant Cell Physiol. 20: 1635-1642.
  • APELBAUM A., BURGOON A.C., ANDERSON J.D., LIEBERMAN M., BEN-ARIE R., MATTOO A.K. 1981. Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts. Plant Physiol. 68: 453-456.
  • AWAD M.A., DE JAGER A. 2002. Formation of flavonoids, especially anthocyanin and chlorogenic acid in ‘Jonagold’ apple skin: influences of growth regulators and fruit maturity. Sci. Hort. 93: 257-266.
  • BAIS H.P., RAVISHANKAR G.A. 2002. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell, Tiss. Organ Cult. 69: 1-34.
  • BOLLER T., HERNER R.C., KENDE H. 1979. Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane- l-carboxylic acid. Planta 145: 293-303.
  • CHANDRAN S., ZULIANA R., YIP Y.K., NAIR H., NASRULHAQ B.A., TIEWY.N. 2007. Effects of sugars and aminooxyacetic acid on the longevity of pollinated Oncidium gower ramsey flowers. Malay. J. Sci. 26: 57-63.
  • COHEN E., ARAD S.M., HEIMER Y.H., MIZRAHI Y. 1984. Polyamine biosynthetic enzymes in the cell cycle of Chlorella. Plant Physiol. 74: 385-388.
  • CRAKER L.E., STANDLEY L.A., STARBUCK M.J. 1971. Ethylene control of anthocyanin synthesis in sorghum. Plant Physiol. 48: 349-352.
  • CRAKER L.E., WETHERBEE P.J. 1973. Ethylene, carbon dioxide, and anthocyanin synthesis. Plant Physiol. 52: 177-179.
  • ENGELSMA G. VAN BRUGGEN J.M.H. 1971. Ethylene production and enzyme induction in excised plant tissues. Plant Physiol. 48: 94-96.
  • FARAGHER J.D., BROHIER R.L. 1984. Anthocyanin accumulation in apple skin during ripening: regulation by ethylene and phenylalanine ammonia-lyase. Sci. Hort. 22: 89-96.
  • FLORES H.E., GALSTON A.W. 1982. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol. 69: 701-706.
  • HANDA A.K., MATTOO A.K. 2010. Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol. Biochem. 48: 540-546.
  • HAVIR E. 1981. Modification of L-phenylalanine ammonia-lyase in soybean cell suspension cultures by 2-aminooxyacetate and L-2-aminooxy-3-phenylpropionate. Planta 152: 124-130.
  • HOAGLAND R.E., DUKE O.S. 1982. Effects of glyphosate on metabolism of phenolic compounds VIII. Comparison of the effects of aminooxyacetate and glyphosate. Plant Cell Physiol. 23: 1081-1088.
  • HONG S.J., LEE S.K. 1996. Changes in endogenous putrescine and the relationship to the ripening of tomato fruits. J. Korean Soc. Hort. Sci. 37: 369-373.
  • HORBOWICZ M., BRENAC P., OBENDORF R.L. 1998. Fagopyritol B1, O-α-D-galactopyranosyl-(1→2)-D-chiro-inositol, a galactosyl cyclitol in maturing buckwheat seeds associated with dessication tolerance. Planta 205: 1-11.
  • HORBOWICZ M., GRZESIUK A., DĘBSKI H., KOCZKODAJ D., SANIEWSKI M. 2008. Methyl jasmonate inhibits anthocyanins synthesis in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Biol. Crac. Ser. Bot. 50: 71--78.
  • HORBOWICZ M., MIODUSZEWSKA H., KOCZKODAJ D., SANIEWSKI M. 2009. The effect of cis-jasmone, jasmonic acid and methyl jasmonate on accumulation of anthocyanins and procyanidins in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Soc. Bot. Pol. 78: 271-277.
  • HORBOWICZ M., OBENDORF R.L. 2005. Fagopyritols accumulation and germination of buckwheat seeds matured at 15, 22, or 30°C. Crop Sci. 45: 1264-1270.
  • HYODO H., HASHIMOTO C., MOROZUMI S., UKAI M., YAMADA C. 1993. Induction of ethylene production and lignin formation in wounded mesocarp tissue of Cucurbita maxima. Acta Hort. 343: 264-269.
  • ICEKSON I., BAKHANSHVILI M., APELABUMA. 1986. Inhibition by ethylene of polyamine biosynthetic enzymes, enhanced lysine decarboxylase activity and cadaverine accumulation in pea seedlings. Plant Physiol. 82: 607-609.
  • KAKKAR R.K., SAWHNEY V.K. 2002. Polyamine research in plants – a changing perspective. Physiol. Plant. 116: 281-292.
  • KAWA J.M., TAYLOR C.G., PRZYBYLSKI R. 2003. Buckwheat concentrate reduces serum glucose in streptozotocin-diabetic rats. J. Agric. Food Chem. 51: 7287-7291.
  • KIM S.-J., KAWAHARADA C., SUZUKI T., SAITO K., HASHIMOTO N., TAKIGAWA S., NODA T., MATSUURAENDO C.,YAMAUCHI H. 2006. Effect of natural light periods on rutin, free amino acid and vitamin C contents in thesprouts of common (Fagopyrum esculentum Moench) and tartary (F. tataricum Gaertn.) buckwheats. Food Sci. Technol.Res. 12: 199-205.
  • KIM S.-L., KIM S.-K., PARK C.-H. 2004. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res. Int. 37: 319-327.
  • KUMAR A., ALTABELLA T., TAYLOR M., TIBURCIO A.F. 1997. Recent advances in polyamine research. Trends Plant Sci. 2: 124-130.
  • KUSANO T., BERBERICH T., TATEDA C., TAKAHASHI Y. 2008. Polyamines: essential factors for growth and survival. Planta 228: 367-381
  • LEE D.W., LOWRY J.B., STONE B.C. 1979. Abaxial anthocyanin layer in leaves of tropical rain forest plants: Enhancer of light capture in deep shade. Biotropica 11: 70-77.
  • LEE D.W., GRAHAM R. 1986. Leaf optical properties of rainforest sun and shade extreme shade plants.Am. J. Bot. 73: 1100-1108.
  • LICHTENTHALER H.K., WELBURN A.R. 1983. Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 603: 591-592.
  • LIU J.-H., KITASHIBA H., WANG J., BAN Y., MORIGUCHI T. 2007. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotech. 24: 117-126.
  • LOCKE J.M., BRYCE J.H., MORIS P.C. 2000. Contrasting effects of ethylene perception and biosynthesis inhibitors on germination and seedling growth of barley (Hordeum vulgare L.). J. Exp. Bot. 352: 1843-1849.
  • MANCINELLI A.L. 1984. Photoregulation of anthocyanin synthesis. VIII. Effects of light pretreatments. Plant Physiol. 75: 447-453.
  • MARTIN-TANGUY J. 2001. Metabolism and function of polyamines in plants: Recent development (new approaches). Plant Growth Regul. 34: 135-148.
  • ROBERTS D.R., WALKER M.A., THOMPSON J.E., DUMBROFF E.B. 1984. The effects of inhibitors of polyamine and ethylene biosynthesis on senescence, ethylene production and polyamine levels in cut carnation flowers. Plant Cell Physiol. 25: 315-322.
  • SERRANO M., ROMOJARO F., CASAS J.L., ACOSTA M. 1991. Ethylene and polyamine metabolism in climacteric and non-climacteric carnation flowers. HortScience 26: 894-896.
  • STRACK D. 1997. Phenolic metabolism. In: P.M. Dey, J.B. Harborne (eds), Plant Biochemistry. Academic Press Incorporated, New York, pp. 387-416.
  • TAKAHASHI T., KAKEHI J.-I. 2010. Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann. Bot. 105: 1-6.
  • TROYER J.R. 1964. Anthocyanin formation in excised segments of buckwheat-seedling hypocotyls. Plant Physiol. 39: 907-912.
  • WALTERS D.R. 2003. Polyamines in plant disease. Phytochemistry 64: 97-107.
  • WHALE S.K., SINGH Z. 2007. Endogenous ethylene and color development in the skin of ‘Pink Lady’ apple. J. Am. Soc. Hort. Sci. 132: 20-28
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.