Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 20 | 2 |
Tytuł artykułu

The potential of the wild dog rose (Rosa canina) to mitigate in vitro rumen methane production

Warianty tytułu
Języki publikacji
This study examined the potential of liquid wild dog rose (Rosa canina) seeds oil and solid seeds residue obtained after CO2 extraction in supercritical conditions to mitigate rumen methane production in vitro. Two experiments were carried out. The substrate comprised of a mixture of meadow hay and barley meal (60:40) for the control diets (CON1 in experiment with oil and CON2 in experiment with residue). The control diets were supplemented up to 5% in dry matter of rose seeds oil (RO) and 5% of rose seeds residue (RR). The following parameters were measured: pH, ammonia, volatile fatty acids, ciliate protozoa and bacteria count, methane concentration and methanogens population. In the RO treatment a decrease in methane production and an increase in the Archea population were observed. In the RR treatment no change in methane production was reported, whereas some variations in protozoal populations were detected in relation to CON2. The potential to mitigate methane production was reported only in wild dog rose seeds oil treatment. Besides, no negative effect of wild dog rose seeds residue on rumen processes was stated, what may predispose this protein and fibre containing by-product to be utilized as ruminants dietary ingredient.
Opis fizyczny
  • Department of Animal Nutrition and Feed Management , RUMEN PULS, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
  • AOAC, 2007. Association of Official Analytical Chemists, Official Methods of Analysis. 18th Edition. Gaithersburg, MA
  • Baah J., Ivan M., Hristov A.N., Koenig K.M., Rode L.M., McAllister T.A., 2007. Effects of potential dietary antiprotozoal supplements on rumen fermentation and digestibility in heifers. Anim. Feed Sci. Tech. 137, 126-137
  • Bhatta R., Uyeno Y., Tajima K., Takenaka A., Yabumoto Y., Nonaka I., Enishi O., Kurihara M., 2009. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92, 5512-5522
  • Bodas R., López S., Fernández M., Garcia-González R., Rodríguez A.B., Wallace R.J., González J.S., 2008. In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants. Anim. Feed Sci. Tech. 145, 245-258
  • Bodas R., López S., Fernández M., Garcia-González R., Wallace R.J., González J.S., 2009. Phytogenic additives to decrease in vitro ruminal methanogenesis. Options Méditerranéennes 85, 279-283
  • Broudiscou L.P., Lassalas B., 2000. Effects of Lavandula officinalis and Equisetum arvense dry extracts and isoquercitrin on the fermentation of diets varying in forage contents by rumen microorganisms in batch culture. Reprod. Nutr. Develop. 40, 431-440
  • Broudiscou L.P., Papon Y., Broudiscou A.F., 2002. Effects of dry plant extracts on feed degradation and the production of rumen microbial biomass in a dual outflow fermenter. Anim. Feed Sci. Tech. 101, 183-189
  • Cieślak A., Machmüller A., Szumacher-Strabel M., Scheeder M.R.L., 2009b. A comparison of two extraction methods used to quantify the C18 fatty acids in feedstuffs and digesta of ruminants. J. Anim. Feed Sci. 18, 362-367
  • Cieślak A., Miltko R., Bełżecki G., Szumacher-Strabel M., Michałowski T., 2009c. Entodinium caudatum, Eudiplodinium maggii and Diploplastron affine: a potential reservoir of unsaturated fatty acids for the host. Acta Protozool. 48, 335-340
  • Cieślak A., Miltko R., Bełżecki G., Szumacher-Strabel M., Potkański A., Kwiatkowska E., Michałowski T., 2006a. Effect of vegetable oils on the methane concentration and population density of the rumen ciliate, Eremoplastron dilobum, grown in vitro. J. Anim. Feed Sci. 15, 15-18
  • Cieślak A., Soliva C.R., Potkański A., Szumacher-Strabel M., Scheeder M.R.L., Machműller A., 2006b. Effect of plant oils on methane emission and biohydrogenation in vitro. Int. Con. Ser. 1293, 180-183
  • Cieślak A., Váradyová Z., Kišidayová S., Szumacher-Strabel M., 2009a. The effects of linoleic acid on the fermentation parameters, population density, and fatty-acid profile of two rumen ciliate cultures, Entodinium caudatum and Diploplastron affine. Acta Protozool. 48, 51-61
  • Czauderna M., Kowalczyk J., Niedźwiedzka K.M., Mieczkowska A., 2008. Efficient procedure for pre-column derivatization of fatty acids with emphasis on short-chain carboxylic acids. Chem. Anal. (Warsaw) 53, 535-544
  • Dohme F., Machműller A., Estermann B.L., Pfister P., Wasserfallen A., Kreuzer M., 1999. The role of the rumen ciliate protozoa for methane suppression caused by coconut oil. Lett. Appl. Microbiol. 29, 187-193
  • Hindrichsen I.K., Wettstein H.-R., Machműller A., Soliva C.R., Bach Knudsen K.E., Madsen J., Kreuzer M., 2004. Effects of feed carbohydrates with contrasting properties on rumen fermentation and methane release in vitro. Can. J. Anim. Sci. 84, 265-276
  • Jalč D., Cieślak A., Szumacher-Strabel M., Potkański A., Kowalczyk J., 2006. The effect of different oils and diets on methane release in an artificial rumen (RUSITEC). J. Anim. Feed Sci. 15, Suppl. 1, 149-152
  • Janda B., Stochmal A., Oleszek W., 2007. The LC-ESI/MS/MS determination of procyanidins in grape seed extracts. Planta Med. 73, 908
  • Kišidayová S., Mihaliková K., Váradyová Z., Potkański A., Szumacher-Strabel M., Cieślak A., Čertik M., Jalč D., 2006. Effect of microbial oil, evening primrose oil and borage oil on rumen ciliate population in artificial rumen (Rusitec). J. Anim. Feed Sci. 15, 153-156
  • Lin C., Raskin L., Stahl D.A., 1997. Microbial community structure in gastrointestinal tracts of domestic animals: comparative analyzes using rRNA-targeted oligonucleotide probes. FEMS Microbiol. Ecol. 22, 281-294
  • Machműller A., Ossowski D.A., Wanner M., Kreuzer M., 1998. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (Rusitec). Anim. Feed Sci. Tech. 77, 117-130
  • Michałowski T., Harmeyer H., Breves G., 1986. The passage of protozoa from the reticulo-rumen through the omasum of sheep. Brit. J. Nutr. 65, 625-634
  • Min B.R., Pinchak W.E., Fulford J.D., Puchala R., 2005. Wheat pasture bloat dynamic, in vitro ruminal gas production, and potential bloat mitigation with condensed tannins. J. Anim. Sci. 83, 1322-1331
  • Moss A.R., Jouany J.-P., Newbold J., 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49, 231-253
  • NRC, 2001. Nutrient Requirements of Dairy Cattle. 7th Edition. National Academy Press. Washington, DC
  • Oreopoulou V., Tzia C., 2007. Utilization of plant by-products for the recovery of proteins, dietary fibers, antioxidants, and colorants. In: V. Oreopoulou, W. Russ (Editors). Utilization of By-Products and Treatment of Waste in the Food Industry. New York, Springer, pp. 209-232
  • Patra A.K., 2010. Meta-analyses of effects of phytochemicals on digestibility and rumen fermentation characteristics associated with methanogenesis. J. Sci. Food Agr. 90, 2700-2708
  • Pulles T., 2011. Greenhouse gas measurement and management: why do we need this journal? Greenhouse Gas Meas. Manage. 1, 4-6
  • Soliva C.R., Meile L., Cieslak A., Kreuzer M., Machmüller A., 2004. Rumen simulation technique study on the interactions of dietary lauric and myristic acid supplementation in suppressing ruminal methanogenesis. Brit. J. Nutr. 92, 689-700
  • Stahl D.A., Amann R.I., Poulsen L.K., Raskin L., Capman W.C., 1995. Use of fluorescent probes for determinative microscopy of methanogenic Archaea. In: K.R. Sowers, H.J. Schreier (Editors). Archaea: Methanogens: a Laboratory Manual. New York, Cold Spring Harbor Laboratory Press, pp. 111-121
  • Stochmal A., Oleszek W., 2007. Seasonal and structural changes of flavones in alfalfa (Medicago sativa) aerial parts. J. Food Agr. Environ. 5, 170-174
  • Szumacher-Strabel M., Cieślak A., 2010. Potential of phytofactors to mitigate rumen ammonia and methane production J. Anim. Feed Sci. 19, 319-337
  • Szumacher-Strabel M., Cieślak A., Nowakowska A., 2009. Effect of oils rich in linoleic acid on in vitro rumen fermentation parameters of sheep, goats and dairy cows. J. Anim. Feed Sci. 18, 440-452
  • Szumacher-Strabel M., Martin S.A., Potkański A., Cieślak A., Kowalczyk J., 2004. Changes in fermentation processes as the effect of vegetable oil supplementation in in vitro studies. J. Anim. Feed Sci. 13, 215-218
  • Szumacher-Strabel M., Potkański A., Kowalczyk J., Cieślak A., Czauderna M., Gubała A., Jędroszkowiak P., 2002. The influence of supplemental fat on rumen volatile fatty acid profile, ammonia and pH levels in sheep fed a standard diet. J. Anim. Feed Sci. 11, 577-587
  • Tavendale M.H., Meagher L.P., Pacheco D., Walter N., Attwood G.T., Sivakumaran S., 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Tech. 123-124, 403-419
  • Waghorn G.C., Tavendale M.H., Woodfield D.R., 2002. Methanogenesis from forages fed to sheep. Proc. N.Z. Grassl. Assn. 64, 167-171
  • Woodward S.L., Waghorn G.C., Lassey K.R., Laboyrie P.G., 2002. Does feeding sulla (Hedysarum coronarium) reduce methane emission from dairy cows? Proc. N. Z. Soc. Anim. Prod. 62, 227-230
  • Woodward S.L., Waghorn G.C., Ulyatt M.J., Lassey K.R., 2001. Early indication that feeding lotus will reduce methane emission from ruminants. Proc. N. Z. Soc. Anim. Prod. 61, 23-26
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.