PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 534 |

Tytuł artykułu

Rola żelaza w kulturach roślin in vitro

Warianty tytułu

EN
The role of iron in in vitro cultures

Języki publikacji

PL

Abstrakty

PL
Omówiono sposób pobierania żelaza z podłoża i jego rolę w życiu roślin oraz oddziaływanie formy i stężenia żelaza w pożywkach na reakcję kultur roślinnych in vitro. Przedstawiono znane przypadki wpływu tego pierwiastka na wszystkie etapy procesów mikrorozmnażania i regeneracji przybyszowej - inicjację kultur, namnażanie, ukorzenianie i aklimatyzację oraz na embriogenezę somatyczną i regenerację pędów przybyszowych. Doniesienia dotyczą kilkunastu gatunków roślin, dla przykładu róży, jeżyny, maliny, borówki, jabłoni, pigwy i in.
EN
Ways of iron acquisition from soil and its role in the plant life are discussed briefly. Based on the available literature information the influence of chemical sources and iron concentration on the reaction of plant tissue culture is presented. The examples of iron effects at all stages of micropropagation and adventitious regeneration (culture initiation, shoot multiplication, rooting and acclimatization), adventitious shoot regeneration, and somatic embryogenesis are given. The above mentioned information concerns different plant species - rose, raspberry, blackberry, apple, blueberry, quince and others.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

534

Opis fizyczny

s.183-197,tab.,bibliogr.

Twórcy

  • Instytut Sadownictwa i Kwiaciarstwa im. Szczepana Pieniążka, ul.Pomologiczna 18, 96-100 Skierniewice
autor

Bibliografia

  • Abadia J. 1992. Leaf responses to Fe deficiency: a review. J. Plant Nutr. 15: 1699-1713.
  • Ambroż H.B., Bradshaw T.K., Kemp T.J., Kornacka E.M., Przybytniak G.K. 2001. Role of iron ions in damage to DNA: influence of ionizing radiation, UV light and H2O2 J. Photochem. and Photobiol.: Chemistry 142: 9-18.
  • Ambroż H.B., Kemp T.J., Rodger A., Przybytniak G. 2004. Ferric and ferrous ions: binding to DNA and influence on radiation-induced processes. Radiation Physics and Chemistry 71: 1023-1030.
  • Anderson W.C. 1980. Tissue culture propagation of red and black raspberies, Rubus ideaus and R. occidentalis. Acta Hort. 112: 13-20.
  • Antonopoulou C., Dimassi K., Therios I., Chatzissavvidis C., Papadakis I. 2007. The effect of Fe-EDDHA and ascorbic acid on in vitro rooting of the peach rootstock GF-677 explants. Acta Physiol. Plant. 29: 559-561.
  • Aynalem H.M., Rigietti T.L., Reed B.M. 2006. Iron formulation affects in vitro storage of hops: an image analysis. In Vitro Cell. Dev. Biol.-Plant 42: 105-110.
  • Becana M., Moran J.F., Iturbe-Ormaetxe I.1998. Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant and Soil 201: 137-147.
  • Bouzayen M., Felix G., Latché A., Pech J.-C., Boller T. 1991. Iron: an essential cofactor for the conversion of 1-aminocyclopropane-1carboxylic acid to ethylene. Planta 184: 244-247.
  • Briat J.-F., Curie C., Gaymard F. 2007. Iron utilization and metabolism in plants. Curr. Opinion in Plant Biol. 10: 276-282.
  • Briat J.-F., Lobréaux S. 1997. Iron transport and storage in plants. Trends in Plant Sci. 2: 187-193.
  • Brüggerman W., Maas-kantel K., Moog P.R. 1993. Iron uptake by leaf mesophyll cells: The role of the plasma membrane-boud ferric-chelate reductase. Planta 190: 151-155.
  • Castillo B., Smith MA.L., Madhavi D.L., Yadava U.L. 1997. Interaction of irradiance level and iron chelate source during shoot tip culture of Carica papaya L. HortScien- ce 32: 1120-1123.
  • Christensen B., Sriskandarajah S., Serek M., Müller R. 2008. In vitro culture of Hibiscus rosa-sinensis L.: Influence of iron, calcium and BAP on establishment and multiplication. Plant Cell, Tiss. and Organ Cult. 93: 151-161.
  • Cinelli F., Loreti F., Muleo R. 2004. Regeneration and selection of quince BA29 (Cydonia oblonga Mill.) somaclones tolerant to lime-induced chlorosis. Acta Hortic. 658: 573-579.
  • Connolly E.I., Guerinot M.L. 2002. Iron stress in plants. Genome Biology 3: 1024.1-1024.4 <http://genomebiology.com/2002/3/8/1024.1>.
  • Curie C., Briat J.-F. 2003. Iron transport and signaling in plants. Annu. Rev. Plant Biol. 54: 183-206.
  • Curie C., Cassin G., Couch D., Divol F., Higuchi K., Le Jean M., Misson J., Schikora A., Czernic P., Mari S. 2009. Metal movement within the plant: contribution of nicotiamine and yellow stripe 1-like transporters. Annals of Bot. 103: 1-11.
  • Dalton C.C., Turner D.A. 1983. Iron phosphate precipitation in Murashige and Skoog media. Physiol. Plant. 57: 472-476.
  • Dimassi K., Chouliaras V., Diamantidis G., Therios I. 2003. Effect of iron and auxins on peroxidase activity and rooting performance of three citrus rootstocks in vitro. J. Plant Nutr. 26: 1023-1034.
  • Dolcet-Sanjuan R., Mok D.W.S., Mok M.C. 1990. Micropropagation of Pyrus and Cydonia and their responses to Fe-limiting conditions. Plant Cell, Tiss. and Organ Cult. 21: 191-199.
  • Donnini S., Cinelli F., Sensale L., Muleo R., Zocchi G., Ranieri A. 2008. Pear plantlets cultured in vitro under lime-induced chlorosis display a better adaptive strategy than quince plantles. Plant Cell, Tiss. and Organ Cult. 93: 191-200.
  • Fernandez V., Ebert G. 2005. Foliar iron fertilization: a critical review. J. Plant Nutr. 28: 2113-2124.
  • Graham M.J., Stephens P.A., Witholm J.M., Nickell C.D. 1992. Soybean genotype evaluation for iron deficiency chlorosis using sodium bicarbonate and tissue culture. J. Plant Nutr. 15: 1215-1225.
  • Guerinot M.L. 2001. Improving rice yields-ironing out the details. Nature Biotechnology 19: 417-418.
  • Guerinot M.L., Yi Y. 1994. Iron: nutritious, noxious and not readily available. Plant Physiol. 104: 615-620.
  • Hangarter R.P., Stasinopoulos T.C. 1991. Effect of Fe-catalyzed photooxidation of FeEDTA on root growth in plant culture media. Plant Physiol. 96: 843-847.
  • Hell R., Stephan U.W. 2003. Iron uptake, trafficking and homeostasis in plants. Planta 216: 541-551.
  • Jeong J., Connolly E.L. 2009. Iron uptake mechanisms in plants: Functions of the FRO family of ferric reductases. Plant Sci. 176: 709-714.
  • Jin C.W., He Y.F., Tang C.X., Wu P., Zheng S.J. 2006. Mechanisms of microbially enhanced Fe acquisition in red clower (Trifolium pretense L.). Plant Cell Environm. 29: 888-897.
  • Kauppinen S. 2001. Optimizing shoot proliferation and rooting of micropropagated Japanese quince (Chaenomeles japonica (Thunb.) Lindl. Ex. Spach). Acta Hort. 560: 433-436.
  • Kim S.A., Guerinot M.L. 2007. Mining iron: iron uptake and transport in plants. FEBS Letters 581: 2273-2280.
  • Kim S.W., Seung C., In D.S., Liu J.R. 2003. Plant regeneration of rose (Rosa hybrida) from embryogenic cell-derived protoplasts. Plant Cell, Tiss. and Organ Cult. 73: 15-19.
  • Larbi A., Morales F., Lopez-Millan A.F., Gogorcena Y., Abadia A., Moog P.R., Abadia J. 2001. Technical advance: reduction of Fe (III)-chelates by mesophyll leaf discs of sugar beet. Multi-component origin and effects of Fe deficiency. Plant & Cell Physiol. 42: 94-105.
  • Lee E.C.M., DeFossard R.A. 1977. Some factors affecting multiple bud formation of strawberry [x Fragaria ananassa Duchesne] in vitro. Acta Hort. 78: 187-195.
  • Leifert C., Murphy K.P., Lumsden P.J. 1995. Mineral and carbohydrate nutrition of plant cell and tissue culture. Crit. Rev. Plant Sci. 14: 83-109.
  • Lombardi L., Sebastiani L., Vitagliano C. 2003. Physiological, biochemical, and molecular effects of in vitro induced iron deficiency in peach rootstock Mr.S 2/5. J. Plant Nutr. 10/11: 2149-2163.
  • Lucena J.J. 2003. Fe chelates for remediation of Fe chlorosis in strategy I plants. J. Plant Nutr. 26: 1969-1984.
  • Marschner H., Römheld V. 1994. Strategies of plants for acquisition of iron. Plant and Soil 165: 261-274.
  • Masalha J., Kosegarten H., Elmaci Ö., Mengel K. 2000. The central role of microbial activity for iron acquisition in maize and sunflower. Biol. Feril. Soils 30: 433-439.
  • Molassiotis A.N., Dimassi K., Therios I., Diamantidis G. 2003. Fe-EDDHA promotes rooting of rootstocks GF-677 (Prunus amygdalus x P. persica) explants in vitro. Biol. Plant. 47: 141-144.
  • Mori S. 1999. Iron acquisition in plants. Curr. Opinion in Plant Biol. 2: 250-253.
  • Muleo R., Cinelli F., Viti R. 1995. Application of tissue culture on quince rootstock in iron limiting conditions. J. Plant Nutr. 18: 91-103.
  • Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473-497.
  • Narajanaswamy S. 1977. Regeneration of plants from tissue culture, w: Plant cell, tissue, and organ culture, (red. - Reinert J., Bajaj Y.P.S.), Springer Verlag: 179-248.
  • Nas M.N., Read P.E. 2001. Micropropagation of hybrid hazelnut: medum composition, physical state and iron source affect shoot morphogenesis, multiplication and explant vitality. Acta Hortic. 556: 251-258
  • Nikolic M., Römheld V. 1999. Mechanism of Fe uptake by the leaf symplast: Is Fe inactivated in leaf a cause of Fe deficient chlorosis? Plant and Soil 215: 229-237.
  • Orlikowska T., Zawadzka M. 2006. Bakterie w kulturach tkanek roślinnych in vitro. Biotechnologia 4(75): 72-85.
  • Palombi M.A., Lombardo B., Caboni E. 2007. In vitro regeneration of wild pear (Pyrus pyraster Burgsd) clones tolerant to Fe-chlorosis and somaclonal variation analysis by RAPD markers. Plant Cell, Tiss. and Organ Cult. 26: 489-496.
  • Papathanasiou F., Selby C., Harvey B.M.R. 1996. Soluble iron is lost from MS medium pre-exposed to light but growth of potato plantlets is not inhibited. Plant Cell, Tiss. and Organ Cult. 46: 117-121.
  • Pich A., Manteuffel R., Hillmer S., Scholz G., Schmidt W. 2001. Fe homeostasis in plant cells: Does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration? Planta 213: 967-976.
  • Pushnik J.C., Miller G.W., Manwaring J.H. 1984. The role of iron in higher plant chlorophyll biosynthesis, maintenance and chloroplast biogenesis. J. Plant Nutr. 7: 733-758.
  • Ramage C.M., Williams R.R. 2003. Mineral uptake in tobacco leaf discs during different developmental stages of shoot organogenesis. Plant Cell Rep. 21: 1047-1053.
  • Rashid A., Street H.E. 1973. The development of haploid embryoids from anther cultures of Atropa belladonna L. Planta 113: 263-270.
  • Romera F.J., Alcàntara E., de la Guardia M.D. 1991. Characterization of the tolerance to iron chlorosis in different peach rootstocks grown in nurient solution. II. Iron-stress response mechanisms. Plant and Soil 130: 121-125.
  • Romera F.J., Alcàntara E., de la Guardia M.D. 1992. Role of roots and shoots in the regulation of the Fe efficiency responses in sunflower and cucumber. Physiol. Plant. 85: 141-146.
  • Romera F.J., Alcàntara E., de la Guardia M.D. 1999. Ethylene production by Fe-deficient roots and its involvement in the regulation of Fe-deficiency stress responses by strategy I plants. Ann. Bot. 83: 51-55.
  • Romera F.J., Frejo V.M., Alcàntara E. 2003. Simultanous Fe- and Cu-deficiency synergically accelerates the induction of several Fe-deficiency stress responses in strategy I plants. Plant Physiol, and Biochem. 41: 821-827.
  • Scandalios J.G. 1990. Response of plant antioxidant defence genes to environmental stress, w: Genomic responses to environmental stress. Scandalios J.G. (red.). Academic Press: 2-42.
  • Schenk N., Hsiao K.C., Bornman C.H. 1991. Avoidance of precipitation and carbohydrate breakdown in autoclaved plant tissue culture media. Plant Cell Rep. 10: 115-119.
  • Schmidt W. 1999. Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol. 141: 1-26.
  • Schmidt W. 2003. Iron solutions: acquisition strategies and signaling passways in plants. Trends in Plant Sci. 8: 188-193.
  • Schwambach J., Fadanelli C., Fett-Neto A. 2005. Mineral nutrition and adventitious footing in microcuttings of Eucalyptus globulus. Tree Physiol. 25: 487-494.
  • Sharma P., Chopra R.N. 1985. Effects of chelating agents and metal ions on growth and fertility in the male clones of the moss Microdus brasiliensis (Dub.) Ther. J. Exp. Bot. 36: 494-502.
  • Shibli R.A., Mohammad M.J., Ajlouni Z.I. 2002. Growth and micronutrient acquisition of in vitro grown bitter almond and sour orange in response to iron concentration from different iron chelates. J. Plant Nutr. 25: 1599-1606.
  • Shibli R.A., Smith M.A.L., Nasr R. 1997. Iron source and cytokinin mitigate the incidence of chlorosis and hyperhydration in vitro. J. Plant Nutr. 20: 773-781.
  • Siedow J.N. 1991. Plant lipoxygenase: structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 145-188.
  • Starck Z. 2005. Rola składników mineralnych w roślinie, w: Fizjologia roślin. Jan Kopcewicz J., Lewak S. PWN, Warszawa: 188-229.
  • Stasinopoulos T.C., Hangarter R.P. 1990. Preventing photochemistry in culture media by long-pass light filters alters growth of cultured tissues. Plant Physiol. 93: 1365-1369.
  • Stephens P.A., Widholm J.M., Nickell C.D. 1990. Iron-deficiency chlorosis of soybeen with tissue culture. Theor. Appl. Genet. 80: 417-420.
  • Tangolar S.G., Ünlü G., Tangolar S. 2008. Use in vitro method to evaluate some grapevine varieties for tolerance and susceptibilty to sodium bicarbonate-induced chlorosis. In Vitro Cell Dev. Biol.-Plant 44: 233-237.
  • Terry N., Abadia J. 1986. Function of iron in chloroplasts. J. Plant Nutr. 9: 609-646.
  • Thomas P., Mythili J.B., Shivashankara K.S. 2000. Effects of photo-oxidative loss of FeNaEDTA and of higher iron supply on chlophyll content, growth and micropropagation rate in triploid watermelon cultures. In Vitro Cell Dev. Biol.-Plant 36: 537-542.
  • Tsao C.W.V., Reed B.M. 2002. Gelling agents, silver nitrate, and sequestrene iron influence adventitious shoot and callus formation from Rubus leaves. In Vitro Cell Dev. Biol.-Plant 38: 29-32.
  • Van der Salm T.P.M., Van der Toorn C.J.G., Hänisch ten Cate C.H., Dubois L.A.M., De Vries D.P., Dons H.J.M. 1994. Importance of the iron chelate formula for micropropagation of Rosa hybrida L. ‘Moneyway’. Plant Cell, Tiss. and Organ Cult. 37: 73-77.
  • Von Sonntag C. 2006. Free-radical-induced DNA damage and its repair: a chemical perspective. Springer: 523 ss.
  • Williams R.R. 1993. Mineral nutrition in vitro - a mechanistic approach. Ann. J. Bot. 41: 237-251.
  • Williams R.R. 1995. The chemical environment, w: Automation and environmental control in plant tissue culture. Aitken-Christi J., Kozai T., Smith M.A.L. (red.). Kluwer Academic Press: 405-479.
  • Yunta F., García-Marco S., Lucena J.J. 2003. Theoretical speciation of ethylene- diamine-N-(o-hydroxyphenylacetic)-N'-(p-hydroxyphenylacetic) acid (o,p-EDDHA) in agronomic conditions. J. Agric. Food Chem. 51: 5391-5399.
  • Zawadzka M., Orlikowska T. 2006. The influence of FeEDDHA in red raspberry cultures during shoot multiplication and adventitious regeneration from leaf explants. Plant Cell, Tiss. and Organ Cult. 85: 145-149.
  • Zawadzka M., Orlikowska T. The influence of FeEDDHA on the in vitro rooting and acclimatization in peat and vermiculite of red raspberry (wysłane do redakcji).
  • Zhen H., Chang-Qing H., Xue-Feng X., Qian W. 2005. Relationship between iron defficiency stress and endogenous hormones in iron-efficient versus inefficient apple genotypes. J. Plant Nutr. 28: 1887-1895.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-465b5a95-0e4e-40e6-adbe-c8f4ca5eb4c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.