Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 50 | 2 |
Tytuł artykułu

Aktywacja mechanizmów obronnych roślin przez szkodniki

Warianty tytułu
Activation of plant defence mechanisms against pests
Języki publikacji
The review focuses on the progress in recent decades on various aspects of molecular responses taking place in plants infested by herbivorous arthropods. The diversity of herbivoryinitiated molecular events was presented with special emphasis on: (1) elicitors and a general recognition process, (2) signal perception, transduction, integration and defence gene expression, (3) cross-talk between salicylate- and jasmonate-dependent defence pathways, and (4) regulators of plant defence responses.
Opis fizyczny
  • Katedra Entomologii Stosowanej, Wydział Ogrodnictwa i Architektury Krajobrazu, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa
  • Alborn H.T., Turlings T.C.J., Jones T.H., Stenhagen G., Loughrin J.H., Tumlinson J.H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276: 945–949.
  • Alborn H.T., Hansen T.V., Jones T.H., Bennett D.C., Tumlinson J.H., Schmelz E.A., Teal P.E.A. 2007. Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proc. Natl. Acad. Sci. USA 104: 12976–12981.
  • Arimura G.-I., Köpke S., Kunert M., Volpe V., David A., Brand P., Dabrowska P., Maffei M.E.,
  • Boland W. 2008. Effects of feeding Spodoptera littoralis on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emission. Plant Physiol. 146: 965–973.
  • Baldwin I.T. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc. Natl. Acad. Sci. USA 95: 8113–8118.
  • Beckers G.J.M., Spoel S.H. 2006. Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biol. 8: 1–10.
  • Bezemer T.M., Van Dam N.M. 2005. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 20: 617–624.
  • Bittel P., Robatzek S. 2007. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr. Opin. Plant Biol. 10: 335–341.
  • Bodenhausen N., Reymond P. 2007. Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol. Plant Microbe Interact. 20: 1406–1420.
  • Bostock R.M. 2005. Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43: 545–580.
  • Browse J., Howe G.A. 2008. New weapons and a rapid response against insect attack. Plant Physiol. 146 (3): 832–838.
  • Campos M.L., de Almeida M., Rossi M.L., Martinelli A.P., Litholdo C.G. Junior, Figueira A., Rampelotti-Ferreira F.T., Vendramim J.D., Benedito V.A., Pereira Peres L.E. 2009. Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato. J. Exp. Bot. 60 (15): 4347–4361.
  • Cooper L.D., Doss R.P., Price R., Peterson K., Oliver J.E. 2005. Application of Bruchin B to pea pods results in the up-regulation of CYP93C18, a putative isoflavone synthase gene, and an increase in the level of pisatin, an isoflavone phytoalexin. J. Exp. Bot. 56: 1229–1237.
  • De Vos M., Van Oosten V.R., Van Poecke R.M.P., Van Pelt J.A., Pozo M.J., Mueller M.J., Buchala A.J., Metraux J.P., Van Loon L.C., Dicke M. 2005. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol. Plant Microbe Interact. 18: 923–937.
  • De Vos M., Van Zaanen W., Koornneef A., Korzelius J.P., Dicke M., Van Loon L.C., Pieterse C.M.J. 2006. Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol. 142: 352–363.
  • Doares S.H., Narváez-Vásquez J., Conconi A., Ryan C.A. 1995. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol. 108: 1741–1746.
  • Dong X. 2004. NPR1, all things considered. Curr. Opin. Plant Biol. 7: 547–552.
  • Doss R.P., Oliver J.E., Proebsting W.M., Potter S.W., Kuy S.R., Clement S.L., Williamson R.T., Carney J.R., DeVilbiss E.D. 2000. Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proc. Natl. Acad. Sci. USA 97: 6218–6223.
  • Eichenseer H., Mathews M.C., Bi J.L., Murphy J.B., Felton G.W. 1999. Salivary glucose oxidase: Multifunctional roles for Helicoverpa zea? Arch. Insect Biochem. Physiol. 42: 99–109.
  • Erb M., Ton J., Degenhardt J., Turlings T.C.J. 2008. Interactions between arthropod-induced aboveground and belowground defenses in plants. Plant Physiol. 146: 867–874.
  • Farmer E.E., Ryan C.A. 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87: 7713–7716.
  • Frost C.J., Mescher M.C., Carlson J.E., De Moraes C.M. 2008. Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol. 146: 818–824.
  • Funk C.J. 2001. Alkaline phosphatase activity in whitefly salivary glands and saliva. Arch. Insect Biochem. Physiol. 46: 165–174.
  • Gatehouse J.A. 2002. Plant resistance towards insect herbivores: a dynamic interaction. New Phytol. 156: 145–169.
  • Gawrońska H., Kiełkiewicz M. 1999. Effect of the carmine spider mite (Acarida: Tetranychidae) infestation and mechanical injury on the level of ABA in tomato plants. Acta Physiol. Plant. 21 (3): 297–303.
  • Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43: 205–227.
  • Goggin F.L. 2007. Plant-aphid interactions: molecular and ecological perspectives. Curr. Opin. Plant Biol. 10: 399–408.
  • Green T.R., Ryan C.A. 1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175: 776–777.
  • Grunewald W., Van Noorden G., Van Isterdael G., Beeckman T., Gheysen G., Mathesius U. 2009. Manipulation of auxin transport in plant roots during Rhizobium symbiosis and nematode parasitism. Plant Cell 21: 2553–2562.
  • Halitschke R., Baldwin I.T. 2003. Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata. Plant J. 36: 794–807.
  • Howe G.A. 2004. Jasmonates as signals in the wound response. J. Plant Growth Regul. 23: 223237.
  • Howe G., Jander G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59: 41–66.
  • Howe G.A., Lightner J., Browse J., Ryan C.A. 1996. An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8: 2067–2077.
  • Hutangura P., Mathesius U., Jones M.G.K., Rolfe B.G. 1999. Auxin induction is a trigger for root gall formation caused by root-knot nematodes in white clover and is associated with the activation of the flavonoid pathway. Aust. J. Plant Physiol. 26: 221–231.
  • Jones J.D.G., Dangl J.L. 2006. The plant immune system. Nature 444: 323–329.
  • Kaloshian I., Walling L.L. 2005. Hemipterans as plant pathogens. Annu. Rev. Plant Biol. 43: 491–521.
  • Kandoth P.K., Ranf S., Pancholi S.S., Jayanty S., Walla M.D., Miller W., Howe G.A., Lincoln Stratmann D.E., Stratmann J.W. 2007. Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemin-mediated defense response against herbivorous insects. PNAS 104 (29): 12205–12210.
  • Kant M.R., Ament K., Sabelis M.W., Haring M.A., Schuurink R.C. 2004. Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol. 135: 483–495.
  • Kazan K., Manners J.M. 2008. Jasmonate signaling: toward an integrated view. Plant Physiol. 146: 1459–1468.
  • Kessler A., Baldwin I.T. 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53: 299–328.
  • Kessler A., Halitschke R., Baldwin I.T. 2004. Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305: 665–668.
  • Koorneef A., Pieterse C.M.J. 2008. Cross talk in defense signaling. Plant Physiol. 146: 839–844.
  • Lait C.G., Alborn H.T., Teal P.E.A., Tumlinson J.H. 2003. Rapid biosynthesis of N-linolenoyl Lglutamine, an elicitor of plant volatiles, by membrane-associated enzyme(s) in Manduca sexta. Proc. Natl. Acad. Sci. USA 100: 7027–7032.
  • Lemaire S. 2004. The glutaredoxin family in oxygenic photosynthetic organisms. Photosynth. Res. 79: 305–318.
  • Li J., Brader G., Palva E.T. 2004a. The WRKY70 transcription factor: a mode of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16: 319–331.
  • Li L., Li C., Lee G.I., Howe G.A. 2002b. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc. Natl. Acad. Sci. USA 99: 6416–6421.
  • Li X.C., Schuler M.A., Berenbaum M.R. 2002c. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419: 712–715.
  • Li C., Williams M.M., Loh Y.T., Lee G.I., Howe G.A. 2002a. Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signaling pathway. Plant Physiol. 130: 494–503.
  • Li L., Zhao Y., McCaig B.C., Wingerd B.A., Wang J., Whalon M.E., Pichersky E., Howe G.A. 2004b. The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16: 126–143.
  • Little D., Gouhier-Darimont C., Bruessow F., Reymond P. 2007. Oviposition by pierid butterflies triggers defense responses in Arabidopsis. Plant Physiol. 143: 784–800.
  • Lorenzo O., Solano R. 2005. Molecular players regulating the jasmonate signalling network. Curr. Opin. Plant Biol. 8: 532–540.
  • Maffei M., Bossi S., Spiteller D., Mithöfer A., Boland W. 2004. Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Plant Physiol. 134: 1752–1762.
  • Maffei M.E., Mithöfer A., Arimura G.I., Uchtenhagen H., Bossi S., Bertea C.M., Cucuzza L.S.,
  • Novero M., Volpe V., Quadro S. 2006. Effects of feeding Spodoptera littoralis on lima bean leaves. III. Membrane depolarization and involvement of hydrogen peroxide. Plant Physiol. 140: 1022–1035.
  • Maffei M.E., Mithöfer A., Boland W. 2007a. Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68: 2946–2959.
  • Maffei M.E., Mithöfer A., Boland W. 2007b. Before gene expression: early events in plant-insect interaction. Trends Plant Sci. 12: 310–316.
  • Maischak H., Grigoriev P.A., Vogel H., Boland W., Mithöfer A. 2007. Oral secretions from herbivorous lepidopteran larvae exhibit ion channel-forming activities. FEBS Lett. 581: 898–904.
  • Maleck K., Levine A., Eulgem T., Morgan A., Schmid J., Lawton K.A., Dangl J.L., Dietrich R.A. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat. Genet. 26: 403–410.
  • Mandaokar A., Thines B., Shin B., Lange B.M., Choi G., Koo Y.J., Yoo Y.J., Choi Y.D., Choi G., Browse J. 2006. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J. 46: 984–1008.
  • Mattiacci L., Dicke M., Posthumus M.A. 1995. Beta-glucosidase–an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc. Natl. Acad. Sci. USA 92: 2036–2040.
  • McConn M., Creelman R.A., Bell E., Mullet J.E., Browse J. 1997. Jasmonate is essential for insect defense Arabidopsis. Proc. Natl. Acad. Sci. USA 94: 5473–5477.
  • Mithöfer A., Boland W. 2008. Recognition of herbivory-associated molecular patterns. Plant Physiol. 146: 825–831.
  • Mur L.A.J., Kenton P., Atzorn R., Miersch O., Wasternack C. 2006. The outcomes of concentration- specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 140: 249–262.
  • Narvaez-Vasquez J., Orozco-Cardenas M.L., Ryan C.A. 2007. Systemic wound signaling in tomato leaves is cooperatively regulated by systemin and hydroxyproline-rich glycopeptide signals. Plant Mol. Biol. 65: 711–718.
  • Ndamukong I., Abdallat A.A., Thurow C., Fode B., Zander M., Weigel R., Gatz C. 2007. SAinducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J. 50: 128–139.
  • Peña-Cortés H., Albrecht T., Prat S., Weiler E.W., Willmitzer L. 1993. Aspirin prevents woundinduced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191: 123–128.
  • Petersen M., Brodersen P., Naested H., Andreasson E., Lindhart U., Johansen B., Nielsen H.B., Lacy M., Austin M.J., Parker J.E. 2000. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103: 1111–1120.
  • Dicke M. 2007. Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci. 12: 564–569.
  • Pieterse C.M.J., Van Loon L.C. 2004. NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol. 7 (4) 456–464.
  • Pieterse C.M.J., Ton J.,. Cross-talk between plant defence signalling pathways: boost or burden? AgBiotechNet 3: ABN 068: 1–8.
  • Ping L., Büchler R., Mithöfer A., Svatos A., Spiteller D., Dettner K., Gmeiner S., Piel J., Schlott B., Boland W. 2007. A novel Dps-type protein from insect gut bacteria catalyses hydrolysis and synthesis of N-acyl amino acids. Environ. Microbiol. 9: 1572–1583.
  • Rayapuram C., Baldwin I.T. 2007. Increased SA in NPR1-silenced plants antagonizes JA and JAdependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature. Plant J. 52 (4): 700-715.
  • Reymond P., Bodenhausen N., Van-Poecke R.M.P., Krishnamurthy V., Dicke M., Farmer E.E. 2004. A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16: 3132–3147.
  • Reymond P., Farmer E.E. 1998. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1: 404–411.
  • Reymond P., Weber H., Damond M., Farmer E.E. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12: 707–720.
  • Ryan C.A. 2000. The systemin signaling pathway: differential activation of plant defensive genes. Biochim. Biophys. Acta 1477: 112–121.
  • Schenk P.M., Kazan K., Wilson I., Anderson J.P., Richmond T., Somerville S.C., Manners J.M. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97: 11655–11660.
  • Schmelz E.A., Carroll M.J., LeClere S., Phipps S.M., Meredith J., Chourey P.S., Alborn H.T., Teal P.E.A. 2006. Fragments of ATP synthase mediate plant perception of insect attack. Proc. Natl. Acad. Sci. USA 103: 8894–8899.
  • Schmelz E.A., LeClere S., Carroll M.J., Alborn H.T., Teal P.E.A. 2007. Cowpea chloroplastic ATP synthase is the source of multiple plant defense elicitors during insect herbivory. Plant Physiol. 144: 793–805.
  • Schilmiller A.L., Howe G.A. 2005. Systemic signaling in the wound response. Curr. Opin. Plant Biol. 8: 369–377.
  • Stintzi A., Weber H., Reymond P., Browse J., Farmer E.E. 2001. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc. Natl. Acad. Sci. USA 98: 12837–12842.
  • Stout M.J., Thaler J.S., Thomma B.P.H.J. 2006. Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu. Rev. Entomol. 51: 663–689.
  • Taylor J.E., Hatcher P.E., Paul N.D. 2004. Crosstalk between plant responses to pathogens and herbivores: a view from the outside in. J. Exp. Bot. 55: 159–168.
  • Thines B., Katsir L., Melotto M., Niu Y., Mandaokar A., Liu G., Nomura K., He S.Y., Howe G.A., Browse J. 2007. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448: 661–665.
  • Thomma B.P.H.J., Penninckx I.A.M.A., Broekaert W.F., Cammue B.P.A. 2001. The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13: 63–68.
  • Van Loon L.C., Rep M., Pieterse C.M.J. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44: 135–162.
  • Van Wees S.C.M., De Swart E.A.M., Van Pelt J.A., Van Loon L.C., Pieterse C.M.J. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-
  • dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97: 8711–8716.
  • Vogel H., Kroymann J., Mitchell-Olds T. 2007. Different transcript patterns in response to specialist and generalist herbivores in the wild Arabidopsis relative Boechera divaricarpa. PLoS ONE 2 (10): e1081. doi:10.1371/journal.pone.0001081.
  • Von Dahl C.C., Baldwin I.T. 2007. Deciphering the role of ethylene in plant-herbivore interactions. J. Plant Growth Regul. 26: 201–209.
  • Walling L.L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19: 195–216.
  • Walling L.L. 2008. Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol. 146: 859–866.
  • Wang L., Allmann S., Wu J., Baldwin I.T. 2008. Comparisons of LIPOXYGENASE3- and JASMONATE-RESISTANT4/6-silenced plants reveal that jasmonic acid and jasmonic acidamino acid conjugates play different roles in herbivore resistance of Nicotiana attenuata. Plant Physiol. 146: 904–915.
  • Wasternack C., Stenzel I., Hause B., Hause G., Kutter C., Maucher H., Neumerkel J., Feussner I., Miersch O. 2006. The wound response in tomato–role of jasmonic acid. J. Plant Physiol. 163: 297–306.
  • Wu J.Q., Hettenhausen C., Meldau S., Baldwin I.T. 2007. Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19: 1096–1122.
  • Yoshinaga N., Aboshi T., Ishikawa C., Fukui M., Shimoda M., Nishida R., Lait C.G., Tumlinson J.H., Mori N. 2007. Fatty acid amides, previously identified in caterpillars, found in the cricket Teleogryllus taiwanemma and fruit fly Drosophila melanogaster larvae. J. Chem. Ecol. 33: 1376–1381.
  • Yuan Y., Zhong S., Li Q., Zhu Z., Lou Y., Wang L., Wang J., Wang M., Li Q., Yang D., He Z. 2007. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol. J. 5: 313–324.
  • Zarate S.I., Kempema L.A., Walling L.L. 2007. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol. 143: 866–875.
  • Zheng S.-J., Dicke M. 2008. Ecological genomics of plant-insect interactions: from gene to community. Plant Physiol. 146: 812–817.
  • Zhu-Salzman K., Luthe D.S., Felton G.W. 2008. Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant Physiol. 146: 852–858.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.