PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 60 | 3 |

Tytuł artykułu

An update on some structural aspects of the mighty miniwall

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Peptidoglycan (PG), the mighty miniwall, is the main structural component of practically all bacterial cell envelopes and has been the subject of a wealth of research over the past 60 years, if only because its biosynthesis is the target of many antibiotics that have successfully been used in the treatment of bacterial infections. This review is mainly focused on the most recent achievements in research on the modification of PG glycan strands, which contribute to the resistance of bacteria to the host immune response to infection and to their own lytic enzymes, and on studies on the spatial organization of the macromolecule.

Wydawca

-

Rocznik

Tom

60

Numer

3

Opis fizyczny

p.181-186,ref.

Twórcy

Bibliografia

  • Andre G., S. Kulakauskas, M.P. Chapot-Chartier, B. Navet, M. Deghorain, E. Bernard, P. Hols and Y.F. Dufrêne. 2010. Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells. Nat. Commun. 1: 1–8.
  • Araki Y., S. Fukuoka, S. Oba and E. Ito. 1971. Enzymatic deacetylation of N-acetylglucosamine residues in peptidoglycan from Bacillus cereus cell walls. Biochem. Biophys. Res. Commun. 45: 751–758.
  • Atrih A. and S.J. Foster. 2001. In vivo roles of the germinationspe cific lytic enzymes of Bacillus subtilis 168. Microbiology 147: 2925–2932.
  • Bera A., S. Herbert, A. Jakob, W. Vollmer and F. Gotz. 2005. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol. Microbiol. 55: 778–787.
  • Bernard E., T. Rolain, P. Courtin, A. Guillot, P. Langella, P. Hols and M.P. Chapot-Chartier. 2011 Characterization of O-Acetylation of N-Acetylglucosamine: A Novel structural variation of bacterial peptidoglycan. J. Biol. Chem. 286: 23950–23958.
  • Blackburn N.T. and A.J. Clarke. 2001. Identification of four families of peptidoglycan lytic transglycosylases. J. Mol. Evol. 52: 78–84.
  • Beveridge T.J. 1995. The periplasm space and the periplasm in gram-positive and gram-negative bacteria. ASM News. 61: 125–130.
  • Boneca I.G., O. Dussurget, D. Cabanes, M.A. Nahori , S. Sousa et al. 2007. A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc. Natl. Acad. Sci. USA. 104: 997–1002.
  • Bugg T.D.H., D. Braddick, C.G. Dowson and D. I. Roper. 2011. Bacterial cell wall assembly: still an attractive antibacterial target. Trends Biotech. 29: 167–173.
  • Cava F., M.A. de Pedro, H. Lam, B.M. Davis and M.K. Waldor. 2011. Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids. EMBO J. 30: 3442–3453.
  • Cloud-Hansen K.A., S.B. Peterson, E.V. Stabb, W.E. Goldman, M.J. McFall-Ngai and J. Handelsman. 2006. Breaching the great wall: peptidoglycan and microbial interactions. Nat. Rev. Microbiol. 9: 710–716.
  • Corr S.C. and L.A. O’Neill. 2009. Listeria monocytogenes infection in the face of innate immunity. Cell. Microbiol. 11: 703–709.
  • Coulombe F., M. Divangahi, F. Veyrier, L. de Léséleuc, J.L. Gleason et al. 2009. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J. Exp. Med. 206: 1709–1716.
  • Crisostomo M.I., W. Vollmer, A.S. Kharat, S. Inhulsen, F. Gehre, S. Buckenmaier and A. Tomasz. 2006. Attenuation of penicillin resistance in a peptidoglycan O-acetyl transferase mutant of Streptococcus pneumoniae. Mol. Microbiol. 61: 1497–1509.
  • Cummins C.S. and H. Harris. 1956. The chemical composition of the cell wall in some gram-positive bacteria and its possible value as a taxonomic character. J. Gen. Microbiol. 14: 583–600.
  • Davis K. M. and J.N. Weiser. 2011 Modifications to the peptidoglycan backbone help bacteria to establish infection. Infect. Immun. 79: 562–570.
  • Dmitriev B.A., F.V. Toukach, K.J. Schaper, O. Holst, E.T. Rietschel and S. Ehlers. 2003. Tertiary structure of bacterial murein: the scaffold model. J. Bacteriol. 185: 3458–3468.
  • Dmitriev B.A., F.V. Toukach, O. Holst, E.T. Rietschel and S. Ehlers. 2004. Tertiary structure of Staphylococcus aureus cell wall murein. J. Bacteriol. 186: 7141–7148.
  • Dmitriev B.A., F. Toukach and S. Ehlers. 2005. Towards a comprehensive view of the bacterial cell wall. Trends Microbiol. 13: 569–754.
  • Dowd M.M., B. Orsburn and D.L. Popham. 2008. Cortex peptidoglycan lytic activity in germinating Bacillus anthracis spores. J. Bacteriol. 190: 4541–4548.
  • Dziarski R. and D. Gupta. 2010. Review: Mammalian peptidoglycan recognition proteins (PGRPs) in innate immunity. Innate Immun. 16: 168–174.
  • Fittipaldi N., T. Sekizaki, D. Takamatsu, D.-P. M. de la Cruz, J. Harel, N.K. Bui, W. Vollmer and M. Gottschalk. 2008 Significant contribution of the pgdA gene to the virulence of Streptococcus suis. Mol. Microbiol. 70(5): 1120–1135.
  • Gan L., S. Chen and G. L. Jensen. 2008. Molecular organization of Gram-negative peptidoglycan. Proc. Natl Acad. Sci. USA 105: 18953–18957.
  • Gilmore M.E., D. Bandyopadhyay, A.M. Dean, S.D. Linnstaedt and D.L. Popham. 2004. Production of muramic delta-lactam in Bacillus subtilis spore peptidoglycan. J. Bacteriol. 186: 80–89.
  • Glauner B. 1988 Separation and quantification of muropeptides with high-performance liquid chromatography. Anal. Biochem. 172: 451–464.
  • Graham L.L., T.J. Beveridge and N. Nanninga. 1991. Periplasmic space and the concept of periplasm. Trends. Biochem. Sci. 16: 328–329.
  • Gram H.C. 1884. Uber die isolierte Farbung der Schizomyceten in Schnitt- and Trockenpraparaten. Fortschritte der Medizin 2: 185–189.
  • Hayhurst E. J., L. Kailas, J. K. Hobbs and S. J. Foster. 2008. Cell wall peptidoglycan architecture in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 105: 14603–14608.
  • Heffron J.D., N. Sherry and D.L. Popham. 2011. In vitro studies of peptidoglycan binding and hydrolysis by the Bacillus anthracis germination-specific lytic enzyme SleB. J. Bacteriol. 193: 125–131.
  • Heidrich C., A. Ursinus, J. Berger, H. Schwarz and J.V. Höltje. 2002. Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli. J. Bacteriol. 184: 6093–6099.
  • Höltje J.V., D. Mirelman, D. Sharon and U. Schwarz. 1975. Novel type of murein transglycosylase in Escherichia coli. J. Bacteriol. 124: 1067–1076.
  • Höltje J.V. 1998 Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62: 181–203.
  • Höltje JV and Glauner B. 1990. Structure and metabolism of the murein sacculus. Res. Microbiol. 141: 75–89.
  • Kietzman C. and E. Tuomanen. 2011. PGRPs kill with an ancient weapon. Nat. Med. 17: 665–666.
  • Korsak D., W. Vollmer and Z. Markiewicz. 2005. Listeria monocytogenes EGD lacking penicillin-binding protein 5 (PBP5) produces a thicker cell wall. FEMS Microbiol. Lett. 251: 281–288.
  • Korsak D., Z. Markiewicz, G.O. Gutkind and J.A. Ayala. 2010. Identification of the full set of Listeria monocytogenes penicillinbinding proteins and characterization of PBPD2 (Lmo2812). BMC Microbiol. 10: 239.
  • Laaberki M.H., J. Pfeffer, A.J. Clarke and J. Dworkin. 2011. O-Acetylation of peptidoglycan is required for proper cell separation and S-layer anchoring in Bacillus anthracis. J. Biol. Chem. 286: 5278–5288.
  • Markiewicz Z., B. Glauner and U.Schwarz. 1983. Murein structure and lack of DD- and LD-carboxypeptidase activities in Caulobacter crescentus. J. Bacteriol. 156: 649–655.
  • Markiewicz Z. 1993. The Structure and Functions of the Cell Envelope (in Polish). Polish Scientific Publishers PWN, Warsaw.
  • Matias V.R. and T.J. Beveridge. 2005. Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol. Microbiol. 56: 240–251.
  • Matias V.R. and T.J. Beveridge. 2006. Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. J. Bacteriol. 188: 1011–1021.
  • Matias V.R. and T.J. Beveridge. 2008. Lipoteichoic acid is a major component of the Bacillus subtilis periplasm. J. Bacteriol. 190: 7414–7418.
  • Merchante R., H.M. Pooley and D. Karamata. 1995. A periplasm in Bacillus subtilis. J. Bacteriol. 177: 6176–6183.
  • Meroueh S.O., K.Z. Bencze, D. Hesek, M. Lee, J.F. Fisher, T.L. Stemmler and S. Mobashery. 2006 Three-dimensional structure of the bacterial cell wall peptidoglycan. Proc. Natl. Acad. Sci. USA 103: 4404–4409.
  • Meyrand M., A. Boughammoura, P. Courtin, C. Mezange, A. Guillot and M-P. Chapot-Chartier. 2007. Peptidoglycan N-acetylglucosamine deacetylation decreases autolysis in Lactococcus lactis. Microbiology 153: 3275–3285.
  • Moynihan P.J. and A.J. Clarke. 2010. O-acetylation of peptidoglycan in gram-negative bacteria: identification and characterization of peptidoglycan O-acetyltransferase in Neisseria gonorrhoeae. J. Biol. Chem. 285: 13264–13273.
  • Park, J.T. and M.J. Johnson. 1949. Accumulation of labile phosphorus in Staphylococcus aureus grown in the presence of penicillin. J. Biol. Chem. 179:585–592.
  • Pavelka M.S. Jr. 2007. Another brick in the wall. Trends Microbiol. 15: 147–149.
  • Peltier J., P. Courtin, I. El Meouche, L. Lemee, M.P. Chapot-Chartier and J.L. Pons. 2011. Clostridium difficile has an original peptidoglycan structure with high level of N-acetylglucosamine deacetylation and mainly 3–3 cross-links. J. Biol. Chem. 286: 20953–20962.
  • Pink D., J. Moeller, B. Quinn, M. Jericho and T. Beveridge. 2000. On the architecture of the gram-negative bacterial murein sacculus. J. Bacteriol. 182: 5925–5930.
  • Popham D.L., J. Helin, C.E. Costello and P. Setlow. 1996. Analysis of the peptidoglycan structure of Bacillus subtilis endospores. J. Bacteriol. 178: 6451–6458.
  • Popowska M., M. Kusio, P. Szymanska and Z. Markiewicz. 2009. Inactivation of the wall-associated de-N-acetylase (PgdA) of Listeria monocytogenes results in greater susceptibility of the cells to induced autolysis. J. Microbiol. Biotechnol. 9: 932–945.
  • Popowska M., M. Osinska and M. Rzeczkowska. 2011. N-acetylglucosamine-6-phosphate deacetylase (NagA) of Listeria monocytogenes EGD, an essential enzyme for the metabolism and recycling of amino sugars. Arch. Microbiol. Accepted Aug. 27 DOI: 10.1007/s00 203-011-0752-3.
  • Rae C.S., A. Geissler, P.C. Adamson and D.A. Portnoy. 2011. Mutations of the Listeria monocytogenes peptidoglycan N-deacetylase and O-acetylase result in enhanced lysozyme sensitivity, bacteriolysis and hyper-induction of innate immune pathways. Infect. Immun. 79: 3596–3608.
  • Raymond J.B., S. Mahapatra, D.C. and M.S. Jr. Pavelka. 2005. Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan. J. Biol. Chem. 280: 326–333.
  • Reith J. and C. Mayer C. 2011. Peptidoglycan turnover and recycling in Gram-positive bacteria Appl. Microbiol. Biotechnol. Jul 28. [Epub ahead of print]
  • Rogers H.J. 1974. Peptidoglycans (mucopeptides): structure, function, and variations. Ann. N. Y. Acad. Sci. 35: 29–51.
  • Salton M. R.J. 1952. Cell Wall of Micrococcus Lysodeikticus as the substrate of lysozyme. Nature 170: 746–748.
  • Salton M.R. and R.W. Horne. 1951 Studies of the bacterial cell wall. II. Methods of preparation and some properties of cell walls. Biochim. Biophys. Acta 7: 177–197.
  • Salton M.R. 1957. Cell-wall amino-acids and amino-sugars. Nature 180: 338–339.
  • Schäberle T.F., W. Vollmer, H.J. Frasch, S. Hüttel, A. Kulik, M. Röttgen, A.K. von Thaler, W. Wohlleben and E. Stegmann. 2011. Self-resistance and cell wall composition in the glycopeptide producer Amycolatopsis balhimycina. Antimicrob. Agents Chemother. 55: 4283–4289.
  • Scheurwater E.M. and Clarke A.J. 2008. The C-terminal domain of Escherichia coli YfhD functions as a lytic transglycosylase. J. Biol. Chem. 283: 8363–8373.
  • Scheurwater E.M. and L.L Burrows. 2011. Maintaining network security: how macromolecular structures cross the peptidoglycan layer. FEMS Microbiol. Lett. 318: 1–9.
  • Schleifer K.H. and O. Kandler. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407–477.
  • Shaik M.M., L. Cendron, R. Percudani and G. Zanotti. 2011. The structure of Helicobacter pylori HP0310 reveals an atypical peptidoglycan deacetylase. PLoS One. 6: e19207.
  • Sharif S., M. Singh, S.J. Kim and J. Schaefer. 2009. Staphylococcus aureus peptidoglycan tertiary structure from carbon-13 spin diffusion. J. Am. Chem. Soc. 131(20):7023–7030.
  • Sharif S, Singh M., Kim S. J. and J Schaefer. 2009. Staphylococcus aureus peptidoglycan tertiary structure from carbon-13 spin diffusion. J. Am .Chem. Soc. 131: 7023–7030.
  • Verwer R.W., N. Nanninga, W. Keck and U. Schwarz. 1978. Arrangement of glycan chains in the sacculus of Escherichia coli. J. Bacteriol. 136:723–729.
  • Vollmer W., D. Blanot and M.A. de Pedro. 2008. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 322: 149–167.
  • Vollmer W. and A. Tomasz. 2002. Peptidoglycan N-acetylglucosamine deacetylase, a putative virulence factor in Streptococcus pneumoniae. Infect. Immun. 70: 7176–7178.
  • Vollmer W. and J.V. Höltje. 2004. The architecture of the murein (peptidoglycan) in gram-negative bacteria: vertical scaffold or horizontal layer(s)? J. Bacteriol. 186: 5978–5987.
  • Vollmer W. and S.K.J. Seligman. 2010 Architecture of peptidoglycan: more data and more models. Trends Microbiol. 18: 59–66.
  • Watterlot L., M. Meyrand, N. Gaide, P. Kharrat, S. Blugeon, J.J. Gratadoux, M.J. Flores, P. Langella, M.P. Chapot-Chartier and L.G. Bermúdez-Humarán. 2010. Variations of N-acetylation level of peptidoglycan do not influence persistence of Lactococcus lactis in the gastrointestinal tract. Int. J. Food Microbiol. 144: 29–34.
  • Weadge J.T., J.M. Pfeffer and A.J. Clarke. 2005. Identification of a new family of enzymes with potential N-acetylpeptidoglycan esterase activity in both Gram-positive and Gram-negative bacteria. BMC Microbiol. 5: 49.
  • Work E. 1957. Biochemistry of the bacterial cell wall. Nature 179: 841–847.
  • Work E. 1961. The mucopeptides of bacterial cell walls. A review. J. Gen. Microbiol. 25:169–189.
  • Work E. 1969. Biochemistry of bacterial cell walls. Lab. Pract. 18: 831–838.
  • Yoon J, Y. Matsuo, S. Matsuda, H. Kasai and A. Yokota. 2010. Cerasicoccus maritimus sp. nov. and Cerasicoccus frondis sp. nov., two peptidoglycan-less marine verrucomicrobial species, and description of Verrucomicrobia phyl. nov., nom. rev. J. Gen. Appl. Microbiol. 56: 213–222.
  • Zuber B., M. Haenni, T. Ribeiro, K. Minnig, F. Lopes, P. Moreillon and J. Dubochet. 2006. Granular layer in the periplasmic space of gram-positive bacteria and fine structures of Enterococcus gallinarum and Streptococcus gordonii septa revealed by cryo-electron microscopy of vitreous sections. J. Bacteriol. 188: 6652–6660.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-2d6903c2-bc2e-4958-95ff-77a75522bd6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.