EN
The application of phenological data together with meteorological and pollen data in a comprehensive analysis gives an opportunity to draw conclusions on variability of the starting date of the pollen season and its dynamics in terms of meteorological factors. It is quite important especially due to the fact that studies conducted all over Europe have proved that species phenology responds to climate warming trends. There has been observed a tendency to an earlier onset of spring flowering and leafing as well as the lengthening of the growing season. Although phenological network studies differ with regard to regions, species, events observed and applied methods, their data show a clear temperature-driven extension of the growing season by up to 2 weeks in the second half of the 20th century in mid- and high northern latitudes; for example, in Germany changes in timing of phenological spring events have been estimated at about -1.6 days / decade, while in Switzerland: -2.3 days / decade. Despite interannual variability in flowering date, caused by specific meteorological conditions each year, long-time series of phenological data from the area of Poland have proved that hazel flowering occurred in the surroundings of Warsaw later in the 50’s (third decade of March) than it is observed at the beginning of the 21st century (second decade of March). There is a lack of such long time series of pollen data, but we can suspect that the hazel pollen season has changed similarly to the time pattern of its flowering. Plants are very sensitive to weather conditions, therefore it is important to know as precisely as possible the impact of meteorological conditions on a plant’s reactions. The determination of thermal thresholds for a specific plant’s reactions may be beneficial for this purpose. The estimated value of Positive Degree Days (PDD> 50), which caused the first Corylus flowers (F2 phenophase) to bloom in the study years, requires testing in future years to make the threshold values credible.