PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 20 | 1 |

Tytuł artykułu

Distribution of polychlorinated biphenyl congeners in root vegetables

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A concentration of seven indicator polychlorinated biphenyl (PCB) congeners (IUPAC No. 28, 52, 101, 118, 138, 153, and 180) in root vegetables was investigated. Plants were grown on equally spiked soils with different physico-chemical properties. The concentration of PCB in all screened plants was higher in roots than in shoots, with a 1.5-3.9-fold higher content in vegetables grown on the Fluvisol compared to the Chernozem. Parsley was more efficient in extracting PCB from soils, followed by carrot and red beet. The majority of PCB accumulated in peels and ranged between 75.3% (red beet) to 93.6% (carrot), regardless of soil type. Lower chlorinated biphenyls were more abundant in surface root layers (peel, cortex). The core of all screened plants showed an almost even distribution of congeners with a higher abundance of hexachlorinated biphenyls.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

1

Opis fizyczny

p.93-99,fig.,ref.

Twórcy

autor
  • Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 165 21 Prague, Czech Republic
autor
autor

Bibliografia

  • 1. WANIA F., MACKAY D. Tracking the distribution of persistent organic pollutants. Environ. Sci. Technol. 30, 390, 1996.
  • 2. LIDSTROM G., HAUG L.S., NICOLAYSEN T., DYBING E. Comparability of world-wide analytical data of PCDDs, PCDFs and non-ortho PCBs in samples of chicken, butter and salmon. Chemosphere 47, 139, 2002.
  • 3. RODZIEWICZ M., KACZMARCZYK A., NIEMIRYCZ E. Polychlorinated biphenyls in the sediments of the Odra River and its tributaries. Pol. J. Environ. Stud. 13, 203, 2004.
  • 4. HARRAD S.J., SEWART A.P., ALCOCK R., BOUMPHREY R., BURNETT V., DUARTEDAVIDSON R., HALSALL C., SANDERS G., WATERHOUSE K., WILD S.R., JONES K.C. Polychlorinated biphenyls (PCBs) in the British environment: sinks sources and temporal trends. Environ. Pollut. 85, 131, 1994.
  • 5. MCLACHLAN M.S. Bioaccumulation of hydrophobic chemicals in agricultural food chains. Environ. Sci. Technol. 30, 252, 1996.
  • 6. THOMAS G.O., SWEETMAN A.J., OCKENDEN W.A., MACKAY D., JONES K.C. Air-pasture transfer of PCBs. Environ. Sci. Technol. 32, 936, 1998.
  • 7. LAZZARI L., SPERNI L., SALIZZATO M., PAVONI B. Gas chromatographic determination of organic micropollutants in samples of sewage sludge and compost: Behaviour of PCB and PAH during composting. Chemosphere 38, (8), 1925, 1999.
  • 8. TRAPP S. Dynamic root uptake model for neutral lipophilic organics. Environ. Toxicol. Chem. 21, (1), 203, 2002.
  • 9. IWATA Y., GUNTHER F.A. Translocation of the polychlorinated biphenyl Aroclor 1254 from soil to carrots under field conditions. Arch. Environ. Contam. Tox. 4, 44, 1976.
  • 10. SUZUKI M., AIZAWA G., OKANO G., TAKAHASHI T. Translocation of polychlorobiphenyls in soil into plants: A study by a method of culture of soybean sprouts. Archive Environ. Contam. 5, 343, 1977.
  • 11. SAWHNEY B.L., HANKIN L. Plant contamination by PCBs from amended soils. J. Food Protect. 47, 232, 1984.
  • 12. BACCI E., GAGGI C. Polychlorinated biphenyls in plant foliage: Translocation or volatilization from contaminated soils? Bull. Environ. Contam. Tox. 35, 673, 1985.
  • 13. KOMP P., MCLACHLAN M.S. Interspecies variability of the plant/air partitioning of polychlorinated biphenyls. Environ. Sci. Technol. 31, 2944, 1997.
  • 14. PURI R.K., QIUPING Y., SHUBENDER K., LOWER W.R., PURI V. Plant uptake and metabolism of polychlorinated biphenyls (PCBs). In: Wang W., Gorsuch J.W., Hughes J.S., Eds. Plants for environmental studies, CRC Press, Boca Raton, FL, pp. 481-513, 1997.
  • 15. STREK H.J., WEBER J.B. Adsorption and reduction in bioactivity of polychlorinated biphenyl (Aroclor 1254) to Redroot Pigweed by soil organic matter and Montmorillonite clay. Soil. Sci. Soc. Amer. J. 46, 318, 1982.
  • 16. BURKEN J.G., SCHNOOR J.L. Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ. Sci. Technol. 32, 3379, 1998.
  • 17. PIER D.M., ZEEB B.A., REIMER K.J. Patterns of contamination among vascular plants exposed to local sources of polychlorinated biphenyls in the Canadian Arctic and Subarctic. Sci. Total Environ. 297, 215, 2002.
  • 18. WHITE J.C., PARRISH Z.D., ISLEYEN M., GENT M.P.N., IANNUCCI-BERGER W., EITZER B.D. Influence of citric acid amendments on the availability of weathered PCBs to plant and earthworm species. Int. J. Phytoremediat. 8, 63, 2006.
  • 19. ZEEB B.A., AMPHLETT J.S., RUTTER A., REIMER K.J. Potential for phytoremediation of polychlorinated biphenyl-(PCB-) contaminated soil. Int. J. Phytoremediat. 8, 199, 2006.
  • 20. WHITFIELD ASLUND M.L., ZEEB B.A., RUTTER A., REIMER K.J. In situ phytoextraction of polychlorinated biphenyl – (PCB) contaminated soil. Sci. Tot. Environ. 374, (1), 1, 2007.
  • 21. KATSOYIANNIS A. Occurrence of polychlorinated biphenyls (PCBs) in the Soulou stream in the power generation area of Eordea, northwestern Greece. Chemosphere 6, 1551, 2006.
  • 22. US EPA. Method 1668, Revision A: Chlorinated biphenyl congeners in water, soil, sediment and tissue by HRGC/HRMS, US Environmental Protection Agency, Washington DC, 1999.
  • 23. JAVORSKA H., TLUSTOS P., KALISZOVA R. Degradation of polychlorinated biphenyls in the rhizosphere of rape, Brasicca napus L. Bull. Environ. Contam. Tox., [In Press] (doi: 10.1007/s00128-009-9691-y).
  • 24. JAVORSKA H., TLUSTOS P., KALISZOVA R., BALIK J., PAVLIKOVA D. Ability of carrot (Daucus carota L.) to accumulate selected polychlorinated biphenyl congeners. Fresen. Eviron. Bull. 16, 792, 2007.
  • 25. COUSINS I.T., JONES K.C. Air-soil exchange of semivolatile organic compounds (SOCs) in the UK. Environ. Pollut. 102, 105, 1998.
  • 26. BACKE C., COUSINS I.T., LARSSON P. PCB in soils and estimated soil-air exchange fluxes of selected PCB congeners in the south of Sweden. Environ. Pollut. 128, (1-2), 59, 2004.
  • 27. RYAN J.A., BELL R.M., DAVIDSON J.M., O'CONNOR G.A. Plant uptake of non-ionic organic chemicals from soils. Chemosphere 17, 2299, 1988.
  • 28. WANG M.-J., JONES K.C. Uptake of chlorobenzenes by carrots from spiked and sewage sludge-amended soil. Environ. Sci. Technol. 28, 1260, 1994.
  • 29. KIPOPOULOU A.M., MANOLI E., SAMARA C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environ. Pollut. 106, 369, 1999.
  • 30. KOPEC K. Tables of nutritional values of vegetables and fruits, 1st ed.; UZPI: Praha, pp. 72, 1998 [In Czech].
  • 31. COLLINS C., FRYER M., GROSSO A. Plant uptake of non-ionic organic chemicals. Environ. Sci. Technol. 40, (1), 45, 2006.
  • 32. BRIGGS G.C., BROMILOW R.H., EVANS A.A. Relationships between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic. Sci. 13, 495, 1982.
  • 33. HAWKER D.W., CONNELL D.W. Octanol water partition-coefficients of polychlorinated biphenyl congeners. Environ. Sci. Technol. 22, (4), 382, 1988.
  • 34. SCHNOOR J.L. Phytoremediation: Technology Evaluation Report. Groundwater Remediation Technology Analysis Center, Pittsburgh, PA, 1998.
  • 35. DEARDEN J.C., TOWNEND M.S. Theoretical approach to structure-activity relationships – Some implications for the concept of optimal lipophilicity. Chem. Soc. Special Pub. 29, 135, 1976.
  • 36. BURKE J.A., MILLS P.A., BOSTWICK D.C. Experiments with evaporation of solutions of chlorinated pesticides. J. Assoc. Off. Anal. Chem. 49, (55), 999, 1966.
  • 37. CHIBA M., MORLEY H.V. Studies of losses of pesticides during sample preparation. J. Assoc. Off. Anal. Chem. 51, (1), 55, 1968.
  • 38. BOWERS W.D., PARSONS M.L., CLEMENT R.E., KARASEK F.W. Component loss during evaporation –reconstruction of organic environmental-samples for gaschromatographic analysis. J. Chromatogr. 207, (2), 203, 1981.
  • 39. MUNTEAN N., JERMINI M., SMALL I., FALZON D., FURST P., MIGLIORATI G., SCORTICHINI G., FORTI A.F., ANKLAM E., VON HOLST C., NIYAZMATOV B., BAHKRIDINOV S., AERTGEERTS R., BERTOLLINI R., TIRADO C., KOLB A. Assessment of dietary exposure to some persistent organic pollutants in the Republic of Karakalpakstan of Uzbekistan. Environ. Health Persp. 111, (10), 1306, 2003.
  • 40. BOBOVNIKOVA T.I., ALEKSEEVA L.B., DIBTSEVA A.V., CHERNIK G.V., ORLINSKY D.B., PRIPUTINA I.V., PLESKACHEVSKAYA G.A. The influence of a capacitor plant in Serpukhov on vegetable contamination by polychlorinated biphenyls. Sci. Tot. Environ. 246, (1), 51, 2000.
  • 41. BUSH B., SHANE L.A., WILSON L.R., BARNARD E.L., BARNES D. Uptake of polychlorobiphenyl congeners by purple loosestrife (Lythrum salicaria) on the banks of the Hudson river. Arch. Environ. Contam. Toxicol. 15, 285, 1986.
  • 42. MCFARLANE J. C. Plant transport of organic chemicals. In: Trapp S., McFarlane J. C. Eds. Plant contamination-modelling and simulation of organic chemical processes, Lewis Publishers: Boca Raton, FL, 1995.
  • 43. MOZA P., WEISGERBER I., KLEIN W. Fate of 2,2’Dichlorophenyl 14C in Carrots, Sugar Beets and Soil under Outdoor Conditions. J. Agric. Food Chem. 24, 881, 1976.
  • 44. WALISZEWSKI S.M., CARVAJAL O., GOMEZARROYO S., AMADOR-MUNOZ O., VILLALOBOSPIETRINI R., HAYWARD-JONES P.M., VALENCIAQUINTANA R. DDT and HCH isomer levels in soils, carrot root and carrot leaf samples B. Environ. Contam. Tox. 81, (4), 343, 2008.
  • 45. ROWSTON R. Application of a 3-phase partition model to bioaccumulation of lipophilic chemicals by terrestrial roots, Honours thesis, Griffith University, Brisbane Australia, 1992. In: Muller J.F., Hulster A., Papke O., Ball M., Marschner H. Transfer of PCDD/PCDF from contaminated soils into carrots, lettuce and peas. Chemosphere 29, 2175, 1994.
  • 46. PATERSON S., MACKAY D., BACCI E., CALAMARI D. Correlation of the equilibrium and kinetics of leaf air exchange of hydrophobic organic chemicals. Environ. Sci. Technol. 25, 866, 1991.
  • 47. MACKAY D. Multimedia environmental models: The fugacity approach, 2nd ed.; CRC Press, Boca Raton, FL, 2001.
  • 48. CAMPANELLA B., PAUL R. Presence in the rhizosphere and leaf extracts of zucchini (Cucurbita pepo L.) and melon (Cucumis melo L.) of molecules capable of increasing the apparent aqueous solubility of hydrophobic pollutants. Int. J. Phytoremediat. 2, 145, 2000.
  • 49. HULSTER A., MARSCHNER H. The influence of root exudates on the uptake of PCDD/PCDF by plants. Organohalog Compd. 20, 31, 1994.
  • 50. HULSTER A., MARSCHNER H. PCDD/PCDF-complexing compounds in zucchini. Organohalog Compd. 24, 493, 1995.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-1b1f6c1f-1746-4607-8354-3b421b435e87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.