PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 16 | 4 |

Tytuł artykułu

Non-erythroid beta spectrin interacting proteins and their effects on spectrin tetramerization

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
With yeast two-hybrid methods, we used a C-terminal fragment (residues 1697–2145) of non-erythroid beta spectrin (βII-C), including the region involved in the association with alpha spectrin to form tetramers, as the bait to screen a human brain cDNA library to identify proteins interacting with βII-C. We applied stringent selection steps to eliminate false positives and identified 17 proteins that interacted with βII-C (IPβII-C s). The proteins include a fragment (residues 38–284) of “THAP domain containing, apoptosis associated protein 3, isoform CRA g”, “glioma tumor suppressor candidate region gene 2” (residues 1-478), a fragment (residues 74–442) of septin 8 isoform c, a fragment (residues 704–953) of “coatomer protein complex, subunit beta 1, a fragment (residues 146–614) of zinc-finger protein 251, and a fragment (residues 284–435) of syntaxin binding protein 1. We used yeast three-hybrid system to determine the effects of these βII-C interacting proteins as well as of 7 proteins previously identified to interact with the tetramerization region of non-erythroid alpha spectrin (IPαII-N s) [1] on spectrin tetramer formation. The results showed that 3 IPβII-C s were able to bind βII-C even in the presence of αII-N, and 4 IPαII-N s were able to bind αII-N in the presence of βII-C. We also found that the syntaxin binding protein 1 fragment abolished αII-N and βII-C interaction, suggesting that this protein may inhibit or regulate non-erythroid spectrin tetramer formation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

16

Numer

4

Opis fizyczny

p.595-609,fig.,ref.

Twórcy

autor
  • Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, IL 60607, USA
autor

Bibliografia

  • 1. Oh, Y. and Fung, L.W.-M. Brain proteins interacting with the tetramerization region of non-erythroid alpha spectrin. Cell. Mol. Biol. Lett. 12 (2007) 604-620.
  • 2. Marchesi, V.T. and Steers, E. Selective solubilization of a protein component of the red cell membrane. Science 159 (1968) 203-204.
  • 3. Hiller, G. and Weber, K. Spectrin is absent in various tissue culture cells. Nature 299 (1977) 181-183.
  • 4. Levine, J. and Willard, M. Axonally transported polypeptides associated with the internal periphery of many cells. J. Cell Biol. 90 (1981) 631-643.
  • 5. Lee, J.K., Coyne, R.S., Dubreuil, R.R., Goldstein, L.S.B. and Branton, D. Cell shape and interaction defects in α-spectrin mutants of Drosophila Melanogaster. J. Cell Biol. 123 (1993) 1797-1809.
  • 6. Pinder, J.C. and Baines, A.J. A protein accumulator. Nature 406 (2000) 253-254.
  • 7. Djinovic-Carugo, K., Gautel, M., Ylanne, J. and Young, P. The spectrin repeat: a structural platform for cytoskeletal protein assemblies. FEBS Lett. 513 (2002) 119-123.
  • 8. Gascard, P. and Mohandas, N. New insights into functions of erythroid proteins in nonerythroid cells. Curr. Opin. Hematol. 7 (2000) 123-129.
  • 9. Sridharan, D.M., McMahon, L.W. and Lambert, M. W. αII-spectrin interacts with five groups of functionally important proteins in the nucleus. Cell Biol. Int. 30 (2006) 866-878.
  • 10. Kanda, K., Tanaka, T. and Sobue, K. Calspectin (fodrin or nonerythroid spectrin)-actin interaction: a possible involvement of 4,1-related protein. Biochem. Biophys. Res. Commun. 140 (1986) 1051-1058.
  • 11. Tsukita, S., Tsukita, S., Ishikawa, H., Kurokawa, M., Morimoto, K., Sobue, K. and Kakiuchi, S. Binding sited of calmodulin and actin on the brain spectrin, calspectin. J. Cell Biol. 97 (1983) 574-578.
  • 12. Sobue, K., Kanda, K. and Kakiuchi, S. Solubilization and partial purification of protein kinase systems from brain membranes that phosphorylate calspectin: a spectrin-like calmodulin-binding protein (fodrin). FEBS Lett. 150 (1982) 185-190.
  • 13. Riederer, B.M., Lopresti, L.L., Krebs, K.E., Zagon, I.S. and Goodman, S.R. Brain spectrin (240/235) and brain spectrin (240/235E): conservation of structure and location within mammalian neural tissue. Brain Res. Bull. 21 (1988) 607-616.
  • 14. Ohara, O., Ohara, R., Yamakawa, H., Nakajima, D. and Nakayama, M. Characterization of a new β-spectrin gene which is predominantly expressed in brain. Mol. Brain Res. 57 (1998) 181-192.
  • 15. Tang, Y., Katuri, V., Iqbal, S., Narayan, T., Wang, Z., Lu, R.S., Mishra, L. and Mishra, B. ELF a beta-spectrin is a neuronal precursor cell marker in developing mammalian brain; structure and organization of the elf/beta-G spectrin gene. Oncogene 21 (2002) 5255-5267.
  • 16. Lambert, S. and Bennett, V. Postmitotic expression of ankyrinR and beta R-spectrin in discrete neuronal populations of the rat brain. J. Neurosci. 13 (1993) 3725-3735.
  • 17. Tang, Y., Katuri, V., Dillner, A., Mishra, B., Deng, C.-X. and Mishra, L. Disruption of transforming growth factor-β signaling in ELF β-spectrindeficient mice. Science 299 (2003) 574-577.
  • 18. Bennett, V. and Baines, A.J. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol. Rev. 81 (2001) 1353-1392.
  • 19. Norman, K.R. and Moerman, D.G. Alpha spectrin is essential for morphogenesis and body wall muscle formation in Caenorhabditis elegant. J. Cell. Biol. 157 (2002) 665-677.
  • 20. McMahon, K.R., Zhang, P., Sridharan, D.M., Lefferts, J.A. and Lambert, M.W. Knockdown of alpha II spectrin in normal human cells by siRNA leads to chromosomal instability and decreased DNA interstrand cross-link repair. Biochem. Biophys. Res. Commun. 381 (2009) 288-293.
  • 21. DeSilva, T.M., Peng, K.-C., Speicher, K.D. and Speicher, D.W. Analysis of human red cell spectrin tetramer (head-to-head) assembly using complementary univalent peptides. Biochemistry 31 (1992) 10872-10878.
  • 22. Bignone, P.A., King, M.D., Pinder, J.C. and Baines, A.J. Phosphorylation of a threonine unique to the short C-terminal isoform of betaII-spectrin links regulation of alpha-spectrin interaction to neuritogenesis. J. Biol. Chem. 232 (2007) 888-896.
  • 23. Speicher, D., DeSilva, T., Speicher, K., Ursitti, J., Hembach, P. and Weglarz, L. Location of the human red cell spectrin tetramer binding site and detection of a related “closed” hairpin loop dimer using proteolytic footprinting. J. Biol. Chem. 268 (1993) 4227-4235.
  • 24. Mehboob, S., Luo, B.-H., Fu, W., Johnson, M.E. and Fung, L.W.-M. Conformational studies of the tetramerization site of human erythroid spectrin by cysteine-scanning spin-labeling EPR methods. Biochemistry 44 (2005) 15898-15905.
  • 25. Ipsaro, J.J., Harper, S.L., Messick, T.E., Marmorstein, R., Mondragon, A. and Speicher, D.W. Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. Blood 115 (2010) 4843-4852.
  • 26. Song, Y., Antoniou, C., Memic, A., Kay, B.K. and Fung, L.W.-M. Apparent structural differences at the tetramerization region of erythroid and nonerythroid beta spectrin as discriminated by phage displayed scFvs. Protein Sci. 20 (2011) 867-879.
  • 27. Antoniou, A., Lam, V.Q. and Fung, L.W.-M. Conformational changes at the tetramerization site of erythroid α-spectrin upon binding β-spectrin: a spin label EPR study. Biochemistry 47 (2008) 10765-10772.
  • 28. Song, Y., Pipala, N.H. and Fung, L.W.-M. The L49F mutation in alpha erythroid spectrin induces local disorder in the tetramer association region: fluorescence and molecular dynamics studies of free and bound alpha spectrin. Protein Sci. 18 (2009) 1916-1925.
  • 29. Mehboob, S., Song, Y., Witek, M., Long, F., Santarsiero, B.D., Johnson, M.E. and Fung, L.W.-M. Crystal structure of the nonerythroid α-spectrin tetramerization site reveals differences between erythroid and nonerythroid spectrin tetramer formation. J. Biol. Chem. 285 (2010) 14572-14587.
  • 30. Mehboob, S., Luo, B.-H., Patel, B.M. and Fung, L.W.-M. αβ spectrin coiled coil association at the tetramerization site. Biochemistry 40 (2001) 12457- 12464.
  • 31. Mehboob, S., Jacob, J., May, M., Kotula, L., Thiyagarajan, P., Johnson, M.E. and Fung, L.W.-M. Structural analysis of the αN-terminal region of erythroid and nonerythroid spectrins by small-angle X-ray scattering. Biochemistry 42 (2003) 14702-14710.
  • 32. Begg, G.E., Morris, M.B. and Ralston G.B. Comparison of the saltdependent self-association of brain and erythroid spectrin. Biochemistry 36 (1997) 6977-6985.
  • 33. Sumandea, C.A. and Fung, L.W.-M. Mutational effects at the tetramerization site of nonerythroid alpha spectrin. Mol. Brain Res. 136 (2005) 81-90.
  • 34. Marchler-Bauer, A., Lu, S., Anderson, J.B., Chitsaz, F., Derbyshire M.K., DeWeese-Scott, C., Fong, J.H., Geer, L.Y., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Jackson, J.D., Ke, Z., Lanczycki, C.J., Lu, F., Marchler, G.H., Mullokandov, M., Omelchenko, M.V., Robertson, C.L., Song, J.S., Thanki, N., Yamashita, R.A., Zhang, D., Zhang, N., Zheng, C. and Bryant, S.H. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 39 (2011) D225-D229.
  • 35. Roussigne, M., Kossida, S., Lavigne, A.-C., Clouaire, T., Ecochard, V., Glories, A., Amalric, F. and Girard, J.-P. The THAP domain: a novel protein motif with similarity to the DNA-binding domain of P element transposase. Trends Biochem. Sci. 28 (2003) 66-69.
  • 36. Macara, I.G., Baldarelli, R., Field, C.M., Glotzer, M., Hayashi, Y., Hsu, S.C., Kennedy, M.B., Kinoshita, M., Longtine, M., Low, C., Maltais, L.J., McKenzie, L., Mitchison, T.J., Nishikawa, T., Noda, M., Petty, E.M., Peifer, M., Pringle, J.R., Robinson, P.J., Roth, D., Russel, S., Stuhlmann, H., Tanaka, M., Tanaka, R., Trimble, W., Ware, J., Zeleznik-Le, N.J. and Zieger, B. Mammalian septins nomenclature. Mol. Biol. Cell 13 (2002) 4141-4143.
  • 37. Peterson, E.A. and Petty, E.M. Conquering the complex world of human septins: implications for health and disease. Clin. Genet. 77 (2010) 511-524.
  • 38. Han, G.A., Malintan, N.T., Collins, B.M., Meunier, F.A. and Sugita, S. Munc18-1 as a key regulator of neurosecretion. J. Neurochem. 115 (2010) 1-10.
  • 39. David, Y., Ziv, T., Admon, A. and Navon, A. The E2 ubiquitin-conjugating enzymes direct polyubiquitination to preferred lysines. J. Biol. Chem. 285 (2010) 8595-8604.
  • 40. Ardley, H.C., Moynihan, T.P. Markham, A.F. and Robinson, P.A. Promoter analysis of the human ubiquitin-conjugating enzyme gene family UBE2L1- 4, including UBE2L3 which encodes UbcH7. Biochim. Biophys. Acta 1491 (2000) 57-64.
  • 41. Good, M.C., Zalatan, J.G. and Lim, W.A. Scaffold proteins: hubs for controlling the flow of cellular information. Science 332 (2011) 680-686.

Uwagi

PL
Rekord w opracowaniu.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.dl-catalog-106b9b11-5f5b-4391-89ae-d209cd354d01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.