Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

pH, ionic strength, and ion competition effect on Cu(II) and Ni(II) sorption by a Na-bentonite used as liner material

Warianty tytułu
Języki publikacji
The potential of a Na-bentonite to be used as liner material for the adsorption of Cu(II) and Ni(II) ions from mono, bi, and polycationic solutions was investigated by batch mode. pH and ionic strength effect on Cu(II) and Ni(II) sorption were evaluated. For isotherm sorption studies, metal solutions parameters (pH and ionic strength) were selected simulating common landfill leachate conditions in the acidogenic stage. The removal of these ions by the Na-bentonite is dominantly controlled by sorption (specifically, cation exchange) under acidic conditions, but it can be strongly enhanced by metal oxide/hydroxide precipitation under alkaline conditions. Adsorption equilibrium models for the single, binary, and multicomponent systems indicate that the Langmuir-type model can fit the experimental data very well for all of them. The co-presence of metals led to a decrease in the sorption of both metals due to competition for adsorption sites. Optimum conditions are obtained when the ionic strength of solution is low (<0.05 M), pH is higher than 6, and the metal concentration is lower than 20 mg/L. Adsorption rates indicate that in addition to its quality as a physical barrier this bentonite can also act as a chemical barrier, limiting the migration of heavy metals from security landfills.
Słowa kluczowe
Opis fizyczny
  • Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET - UNCo), Neuquén, Argentina
  • Comahue Research Center of Environmental Toxicology and Agrobiotechnology (CITAAC, CONICET - UNCo), Neuquén, Argentina
  • Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), Neuquén, Argentina
  • 1. CHRISTENSEN T.H., KJELDSEN P., BJERG P.L., JENSEN D.L., CHRISTENSEN J.B., BAUN A., ALBRECHTSEN H.J., HERN H. Biogeochemistry of landfill leachate plumes. Appl. Geochem. 16, 659, 2001.
  • 2. NAVEEN B.P., DURGA MADHAB MAHAPATRA, SITHARAM T.G., SIVAPULLAIAH P.V., RAMACHANDRA T.V. Physico-chemical and biological characterization of urban municipal landfill leachate. Environ. Pollut. 220, 1, 2017.
  • 3. ROBINSON T. Removal of toxic metals during biological treatment of landfill leachates. Waste Manage. 63, 299, 2017.
  • 4. UDDIN M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 308, 438, 2017.
  • 5. AWUAL M.R., ISMAEL M., YAITA T., SAFTY S.A.E., SHIWAKU H., OKAMOTO Y., SUZUKI S. Trace copper(II) ions detection and removal from water using novel ligand modified composite adsorbent. Chem. Eng. J. 222, 67, 2013.
  • 6. AHMURAZZAMAN M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interface Sci. 116, 36, 2011.
  • 7. LI B., LI L.Y., GRACE J.R. Adsorption and hydraulic conductivity of landfill-leachate perfluorinated compounds in bentonite barrier mixtures. J. Environ. Manage.156, 236, 2015.
  • 8. MISHRA A. K., OHTSUBO M., LI L., HIGASHI T. Controlling factors of the swelling of various bentonites and their correlations with the hydraulic conductivity of soil-bentonite mixtures. Appl. Clay Sci. 52, 78, 2011.
  • 9. MUSSO T.B., FRANCISCA F.M., PETTINARI G., ROEHL K.E. Suitability of a cretaceous natural Nabentonite as construction material for landfill liners. Environ Eng Manage J. 15 (11), 2519, 2016.
  • 10. MOHELLEBI F., LAKEL F. Adsorption of Zn2+ on Algerian untreated bentonite clay. Desalin. Water Treat. 57 (13), 6051, 2016.
  • 11. AL-JLIL S. Kinetics of adsorption of chromium and lead ions on bentonite clay using novel internal parallel model. Res. J. Environ. Toxicol. 9, 1, 2015.
  • 12. ATKOVSKA K., BLIZNAKOVSKA B., RUSESKA G., BOGOEVSKI S., BOSKOVSKI B., GROZDANOV A. Adsorption of Fe(II) and Zn(II) ions from landfill leachate by natural bentonite. J. Chem. Technol. Metall. 51 (2), 215, 2016.
  • 13. ZAKI A.A., AHMAD M.I., ABD EL-RAHMAN K.M. Sorption characteristics of a landfill clay soil as a retardation barrier of some heavy metals. Appl. Clay Sci. 135, 150, 2017.
  • 14. CHEN Y.G., YE W.M., YANG X.M., DENG F.Y., HE Y. Effect of contact time, pH, and ionic strength on Cd(II) adsorption from aqueous solution onto bentonite from Gaomiaozi, China. Environ. Earth Sci. 64, 329, 2011.
  • 15. SDIRI A., HIGASHI T., CHAABOUNI R., JAMOUSSI F. Competitive removal of heavy metals from aqueous solutions by montmorillonitic and calcareous clays. Water Air Soil Pollut. 223, 1194, 2012.
  • 16. PADILLA-ORTEGA E., LEYVA-RAMOS R., FLORESCANO J.V. Binary adsorption of heavy metals from aqueous solution onto natural clays. Chem. Eng. J. 225, 535, 2013.
  • 17. SDIRI A.T., HIGASHI T., JAMOUSSI F. Adsorption of copper and zinc onto natural clay in single and binary systems. Int. J. Environ. Sci. Technol. 11 (4), 1081, 2014.
  • 18. KHALFA L., BAGANE M., CERVERA M.L., NAJJAR S. Competitive Adsorption of Heavy Metals onto Natural and Activated Clay: Equilibrium, Kinetics and Modeling. International Journal of Chemical and Molecular Engineering, 10 (5), 583, 2016.
  • 19. MAVAKALA B.K., LE FAUCHEUR S., MULAJI C.K., LAFFITE A., DEVARAJAN N., BIEY E.M., GIULIANI G., OTAMONGA J.P., KABATUSUILA P., MPIANA P.T., POTÉ J. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests. Waste Manage. 55, 238, 2016.
  • 20. VALLÉS J.M., IMPICCINI A. Neuquen basin, Río Negro, Neuquén and La Pampa Bentonites. Tertiary bentonites deposits from Zapala and Añelo, Neuquen. In: Recursos Minerales de la República Argentina. E. Zappettini, Ed., Servicio Geológico Minero Argentino, Buenos Aires, 1113, 1999.
  • 21. MUSSO T.B., ROEHL K.E., PETTINARI G., VALLÉS J.M. Assessment of smectite-rich claystones from Northpatagonia for their use as liner materials in landfills. Appl. Clay Sci. 48, 438, 2010.
  • 22. CHAI J.C., MIURA N. Comparing the performance of landfill liner systems. J. Mater. Cycles. Waste Manage. 4, 135, 2002.
  • 23. MUSSO T.B., PETTINARI G., PAROLO M.E., MESQUÍN L. Smectitic clays from Northpatagonic region of Argentina as hydraulic barriers of landfills and heavy metals retention agents. Rev. Int. Contam. Ambie. 33 (1), 141, 2017.
  • 24. MUSSO T.B., PAROLO M.E., PETTINARI G., FRANCISCA F.M. Cu(II) and Zn(II) adsorption capacity of three different clay liner materials. J. Environ. Manage. 146, 50, 2014.
  • 25. FRANCISCA F.M., GLATSTEIN D.A. Long term hydraulic conductivity of compacted soils permeated with landfill leachate. Appl. Clay Sci. 49, 187, 2010.
  • 26. LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361, 1918.
  • 27. FREUNDLICH H.M.F. Uber die adsorption in losangen Z. Phys.Chem. 57,385, 1906.
  • 28. SHEINDORF C., REBHUN M., SHEINTUCH M. A Freundlich-type multicomponent isotherm. J. Colloid Interf Sci. 79, 136, 1981.
  • 29. MOHAN D., SINGH K.P. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agricultural waste. Water Res. 36, 2304, 2002.
  • 30. LIU J.F., CAO C.H., JIANG Y.C. Preliminary study on the dynamics of competitive adsorption of heavy metals in soil. Soil Fertil. 3, 10, 2000.
  • 31. DING S., SUN Y., YANG C., XU B. Removal of copper from aqueous solutions by bentonites and the factors affecting it. Min Sci Technol. 19, 489, 2009.
  • 32. WU X.L., ZHAO D., YANG S.T. Impact of solution chemistry conditions on the sorption behavior of Cu(II) on Lin’an montmorillonite. Desalination 269, 84, 2011.
  • 33. LIU X., HICHER P., MURESAN B., SAIYOURI N., HICHER P.Y. Heavy metal retention properties of kaolin and bentonite in a wide range of concentration and different pH conditions.Appl. Clay Sci. 119, 365, 2016.
  • 34. BOURLIVA A., MICHAILIDIS K., SIKALIDIS C., FILIPPIDIS A., BETSIOU M. Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto natural bentonite: study in mono- and multi-metal systems. Environ. Earth Sci. 73, 5435, 2015.
  • 35. LIANG S., GUO X., FENG N., Q. TIAN. Isotherms kinetics and thermodynamic studies of adsorption of Cu(II) from aqueous solution by Mg/K type orange peel adsorbents. J Hazard Mat. 174, 756, 2010.
  • 36. VHAHANGWELE M., MUGERA G. W. The potential of ball-milled South African bentonite clay for attenuation of heavy metals from acidic wastewaters: Simultaneous sorption of Co2+, Cu2+, Ni2+, Pb2+, and Zn2+ ions. J. Environ. Chem. Eng. 3, 2416, 2015.
  • 37. XU D., ZHOU X., WANG X. Adsorption and desorption of Ni2+ on Na-montmorillonite: Effect of pH, ionic strength, fulvic acid, humic acid and addition sequences. Appl. Clay Sci. 39, 133, 2008.
  • 38. AKPOMIE K.G., DAWODU F.A. Potential of a lowcost bentonite for heavy metal abstraction from binary component system. Beni-Suef Univ. J. Appl. Sci. 4, 1, 2015.
  • 39. REDDAD Z., GÉRENTE C., ANDRÈS Y., RALET M.C., THIBAULT J.F., LE CLOIREC P. Ni(II) and Cu(II) binding properties of native and modified sugar beet pulp. Carbohyd. Polym. 49 (1), 23, 2002.
  • 40. SHEIKHHOSSEINI A., SHIRVANI M., SHARIATMADARI H. Competitive sorption of nickel, cadmium, zinc and copper on palygorskite and sepiolite silicate clay minerals. Geoderma 192, 249, 2013.
  • 41. IJAGBEMI C.O., BAEK M.H., KIM D. S. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. J. Hazard. Mater. 166, 538, 2009.
  • 42. JIANG M., JIN X., LU X.Q., CHEN Z. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination 252 (1-3), 33, 2010.
  • 43. PARE S., PERSSON I., GUEL B., LUNDBERG D., ZERBO L., KAM S., TRAORÉ K. Heavy metal removal from aqueous solutions by sorption using natural clays from Burkina Faso. Afr. J. Biotechnol. 11 (45), 10395, 2012.
  • 44. STADLER M., SCHINDLER P.W. Modeling of H+ and Cu2+ adsorption on calcium-montmorillonite. Clay Clay Miner. 41 (3), 288, 1993.
  • 45. LIU Z., ZHOU S. Adsorption of copper and nickel on Nabentonite. Process Saf. Environ. 88, 62, 2010.
  • 46. MELICHOVÁ Z., HROMADA L. Adsorption of Pb2+ and Cu2+ ions from aqueous solutions on natural bentonite. Pol. J. Environ. Stud. 22 (2), 457, 2013.
  • 47. SAHA U.K., TANIGUCHI S., SAKURAI K. Simultaneous adsorption of cadmium, zinc, and lead on hydroxyalumium- and hydoroxyaluminosilicatemontmorillonite complexes. Soil Sci. Soc. Am. J. 66, 117, 2002.
  • 48. CUERVO M., ASEDEGBEGANIETO E., DIAZ E., ORDONEZ S., VEGA A., DONGIL A. Modification of the adsorption properties of high surface area graphites by oxygen functional groups. Carbon 46, 2096, 2008.
  • 49. GLATSTEIN D.A., FRANCISCA F.M. Influence of pH and ionic strength on Cd, Cu and Pb removal from water by adsorption in Na-bentonite. Appl. Clay Sci. 118, 61, 2015.
  • 50. TURAN N.G., GUMUSEL E.B. Utilizing natural liner materials for heavy metal removal in simulated landfill conditions. Clean, 41 (4), 403, 2013.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.