PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 67 | 2 |

Tytuł artykułu

Potential health lmplications of the consumption of thermally-oxidized cooking oils – a review

Treść / Zawartość

Warianty tytułu

Języki publikacji

PL

Abstrakty

EN
Cooking oils are an integral part of a human diet as they are used in almost all types of culinary practices. They serve as sources of lipids with a signifi cant nutritive value and health benefi ts which can be attributed to their fatty acid compositions and biological antioxidants. However, cooking oils are usually subjected to thermal oxidation which occurs when fresh cooking oil is heated at high temperatures during various food preparations. Repeated use of cooking oils in the commercial food industry is also common to maximize profit. Thermal oxidation of edible oils had since attracted great attention of nutritionist and researchers given the deteriorative effect such as generation of very cytotoxic compounds, loss of carotenoid, phenolics and vitamins thus reducing the overall antioxidant properties of the oils. Furthermore, several in vivo studies had suggested that consumption of thermally-oxidized cooking oils might not be healthy as it might negatively influence the lipid profile (increased low density lipoprotein (LDL), decreased high density lipoprotein (HDL) and elevated cholesterol level), haematological system (alteration in concentration of heamoglobin (Hb), packed cell volume (PCV), white blood cell (WBC) count, neutrophil and lymphocyte counts), kidney function, and induce lipid peroxidation and oxidative stress which have been associated with the pathogenesis of various degenerative diseases. Therefore, thermal oxidation seems not to provide any health benefit, as it deteriorates cooking oils and the consumption of the oils may predispose consumers to various disease conditions that may ensue from free radical generation, thereby having deleterious effect on human health.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

67

Numer

2

Opis fizyczny

P.95-105,fig.,ref.

Twórcy

autor
  • SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
  • Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700 Eastern Cape, South Africa
autor
  • Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, P. M.B. 704, Akure, 340252, Nigeria
autor
  • SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
  • Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700 Eastern Cape, South Africa

Bibliografia

  • 1. Achouh P.E., Simonet S., Fabiani J.N., Verbeuren T.J., Carbon monoxide induces relaxation of human internal thoracic and radial arterial grafts. Interact. Cardiovasc. Thorac. Surg., 2008, 7, 959–962.
  • 2. Adam S.K., Das S., Soelaiman I.N., Umar N.A., Jaarin K., Consumption of repeatedly heated soy oil increases the serum parameters related to atherosclerosis in ovariectomized rats. Tohoku J. Exp. Med., 2008b, 215, 219–226.
  • 3. Adam S.K., Soelaiman I.N., Umar N.A., Mokhtar N., Mohamed N., Jaarin K., Effects of repeatedly heated palm oil on serum lipid profi le, lipid peroxidation and homocysteine levels in a postmenopausal rat model. McGill J. Med., 2008a, 11, 145–151.
  • 4. Adam S.K., Sulaiman N.A., Mat Top A.G., Jaarin K., Heating reduces vitamin E content in palm and soy oils. Malays. J. Biochem. Mol. Biol., 2007, 15 (2), 76–79.
  • 5. Aladedunye F.A., Przybylski R., Degradation and nutritional quality changes of oil during frying. J. Am. Oil Chem. Soc., 2009, 86, 149–156.
  • 6. Alarcon de la Lastra C., Barranco M.D., Motilova V., Herrerias J.M., Mediterranean diet and health: biological importance of olive oil. Curr. Pharm. Design., 2001, 7, 933–950.
  • 7. Andrikopoulos N.K., Kalogeropoulos N., Falirea A., Barbagianni M.N., Performance of virgin olive oil and vegetable shortening during domestic deep-frying and pan-frying of potatoes. Int. J. Food Sci. Tech., 2002, 37 (2), 177–190.
  • 8. Ani E.J., Nna V.U., Obi C.E., Udobong N.J., Comparative effects of thermoxidized palm oil and groundnut oil diets on some haematological parameters in albino wistar rats. Aust. J. Basic Appl. Sci., 2015a, 9 (5), 181–184.
  • 9. Ani E.J., Nna V.U., Owu D.U., Osim E.E., Effect of chronic consumption of two forms of palm oil diet on serum electrolytes, creatinine and urea in rabbits. J. Appl. Pharm. Sci., 2015b, 5 (6), 115–119.
  • 10. Attya M., Benabdelkamel H., Perri E., Russo A., Sindona G., Effects of conventional heating on the stability of major olive oil phenolic compounds by tandem mass spectrometry and isotope dilution assay. Molecules, 2010, 15, 8734–8746.
  • 11. Blekas G., Boskou D., Phytosterols and stability of frying oils. 1999, in: Frying of Food. (eds. D.Boskou, I. Elmadfa). Technomic Publishing Co. Inc., Lancaster, pp. 205–222.
  • 12. Boskou D., Culinary applications. 2006, in: Olive Oil Chemistry and Technology (ed. D. Boskou). AOCS Press, Champaign, Illinois, pp. 243–248.
  • 13. Brenes M., Garciäa A., Dobarganes M.C., Velasco J., Romero C.N., influence of thermal treatments simulating cooking processes on the polyphenol content in virgin olive oil. J Agric. Food Chem., 2002, 50, 5962–5967.
  • 14. Carrasco-Pancorbo A., Cerretani L., Bendini A., Segura-Carretero A., Lercker G., Fernaändez-Gutieärrez A., Evaluation of the influence of thermal oxidation on the phenolic composition and on the antioxidant activity of extra-virgin olive oils. J. Agric. Food Chem., 2007, 55, 4771–4780.
  • 15. Chlopicki S., Olszanecki K., Marcinkiewicz E., Lomnicka M., Motterlini R., Carbon monoxide released by CORM-3 inhibits human platelets by a mechanism independent of soluble guanylate cyclase. Cardiovasc. Res., 2006, 71, 393–401.
  • 16. Choe E., Min D.B., Chemistry of deep-fat frying oils. J. Food Sci., 2007, 72 (5), R77–R86.
  • 17. Chong Y.H., Ng T.K.W., Effects of palm oil on cardiovascular risk. Med. J. Malaysia, 1991, 46, 1.
  • 18. Cicerale S., Lucas, L.J., Keast R.S.J., Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr. Opin. Biotechnol., 2012, 23, 129–135.
  • 19. Dittrich M., Jahreis G., Bothor K. et al., Benefits of foods supplemented with vegetable oils rich in alpha-linolenic, stearidonic or docosahexaenoic acid in hypertriglyceridemic subjects: a double-blind, randomized, controlled trial. Eur. J. Nutr., 2015, 54, 881–893.
  • 20. Dobarganes C., Márquez-Ruiz G., Possible adverse effects of frying with vegetable oils. British J. Nutr., 2015, 113, S49-S57.
  • 21. Falade A.O., Oboh G., Thermal oxidation induces lipid peroxidation and changes in the physico-chemical properties and β-carotene content of arachis oil. Int. J. Food Sci., 2015, dx.doi.org/10.1155/2015/806524.
  • 22. Falade A.O., Oboh G., Ademiluyi A.O., Odubanjo O.V., Consumption of thermally oxidized palm oil diets alters biochemical indices rats. Beni Suef University J. Basic Appl. Sci., 2015, 4 (2), 150–156.
  • 23. Farmer E.E., Davoine C., Reactive electrophile species. Curr. Opin. Plant Biol., 2007, 10 (4), 380–6.
  • 24. Fullana A., Carbonell-Barrachina A.A., Sidhu S., Comparison of volatile aldehydes present in the cooking fumes of extra virgin olive, olive, and canola oils. J. Agric. Food Chem., 2004, 52, 5207–5214.
  • 25. Giacco F., Brownlee M., Oxidative stress and diabetic complications. Circ. Res., 2010, 107 (9), 1058–1070.
  • 26. Guallar-Castillon P., Rodríguez-Artalejo F., Lopez-Garcia E. et al., Intake of fried foods is associated with obesity in the cohort of Spanish adults from the European prospective investigation into cancer and nutrirtion. Am. J. Clin. Nutr., 2007, 86, 198–205.
  • 27. Gupta M.K., Frying oil. 2005, in: Edible Oil and Food Products: Products and Applications (ed. F. Shahidi). John Wiley & Sons, Hoboken, NJ, USA, pp. 1–31.
  • 28. Halliwell B., Oxidative stress and cancer: have we moved forward. Biochem. J., 2007, 401 (1), 1–11.
  • 29. Halvorsen B.L., Blomhoff R., Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements. Food Nutr. Res., 2011, 55, 5792, doi: 10.3402/fnr.v55i0.5792.
  • 30. Hamsi M.A., Othman F., Das S., Kamisah Y., Thent Z.C., Qodriyah H.M., Zakaria Z., Emran A., Subermaniam K., Jaarin K., Effect of consumption of fresh and heated virgin coconut oil on the blood pressure and infl ammatory biomarkers: An experimental study in Sprague Dawley rats. Alexandria J. Med., 2015, 51, 53–63.
  • 31. Innis S.M., Dyer R.A., Dietary canola oil alters hematological indices and blood lipids in neonatal piglets fed formula. J. Nutr., 1999, 129 (7), 1261–1268.
  • 32. Ivanov D.S., Lević J.D., Sredanović S.A., Fatty acid composition of various soybean products. Food Feed Res., 2010, 37 (2), 65–70.
  • 33. Jaarin K., Mustafa M.R., Leong X.F., The effects of heated vegetable oils on blood pressure in rats. Clinics, 2011, 66 (12), 2125–2132.
  • 34. Katragadda H.R., Fullana A.S., Sidhu S., Carbonell-Barrachina A.A., Emissions of volatile aldehydes from heated cooking oils. Food Chem., 2010, 120, 59–65.
  • 35. Leong X.F., Mustafa M.R., Das S., Jaarin K., Association of elevated blood pressure and impaired vasorelaxation in experimental Sprague-Dawley rats fed with heated vegetable oil. Lipids Health Dis., 2010, 9, 66.
  • 36. Leong X.F., Ng C.U., Jaarin K., Mustafa M.R., Effects of repeated heating of cooking oils on antioxidant content and endothelial function. Austin J. Pharmacol. Ther., 2015, 3 (2), 1068.
  • 37. Leong X.F., Salimon J., Mustafa M.R., Jaarin K., Effect of repeatedly heated palm olein on blood pressure-regulating enzymes activity and lipid peroxidation in rats. Malays. J. Med. Sci., 2012, 19 (1), 20–29.
  • 38. Marinova E.M., Seizova K.A., Totseva I.R., Panayotova S.S., Marekov I.N., Momchilova S.M., Oxidative changes in some vegetable oils during heating at frying temperature. Bulg. Chem. Commun., 2012, 44 (1), 57–63.
  • 39. Márquez-Ruiz G., Pérez-Caminò M.C., Dobarganes M.C., Digestibility of fatty acid monomers, dimers and polymers in the rat. J. Am. Oil Chem. Soc., 1992, 69, 930–934.
  • 40. Márquez-Ruiz G., Pérez-Caminò M.C., Dobarganes M.C., Evaluation of hydrolysis and absorption of thermally oxidized olive oil in non-absorbed lipids in the rat. Ann. Nutr. Metabol., 1993, 37, 121–128.
  • 41. Massy Z.A., Stenvinkel P., Drueke T.B., The role of oxidative stress in chronic kidney disease. Semin. Dialysis, 2009, 22 (4), 405–408.
  • 42. Matthäus B., Use of palm oil for frying in comparison with other high-stability oils. Eur. J. Lipid Sci. Tech., 2007, 109 (4), 400–9.
  • 43. Mba O.I., Dumont M., Ngadi M., Palm oil: processing, characterization and utilization in the food industry – A review. Food Biosci., 2015, 10, 26–41.
  • 44. Meacher D.M., Menzel D.B., Depletion in lung cells by low-molecular weight aldehydes. Cell Biol. Toxicol., 1999, 15, 163–171.
  • 45. Mesembe O.E., Ibanga I., Osim E.E., The effects of fresh and thermoxidized palm oil diets on some haematological indices in rat. Niger. J. Physiol. Sci., 2004, 19 (1–2), 86–91.
  • 46. Mudau M., Genis A., Lochner A., Strijdom H., Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc. J. Afr., 2012, 24 (4), 222–231.
  • 47. Mukherjee S., Mitra A., Health effects of palm oil. J. Hum. Ecol. 2009, 26 (3), 197–203.
  • 48. Nakbi A., Tayeb W., Dabbou S., Chargui I., Issaoui M., Zakhama A., Miled, A., Hypolipidemic and antioxidant activities of virgin olive oil and its fractions in 2, 4-dichlorophenoxy acetic acid- -treated rats. Nutr., 2012, 28, 81–91.
  • 49. Naz S., Siddiqi R., Sheikh H., Sayeed S.A., Deterioration of olive, corn and soybean oils due to air, light, heat and deep-frying. Food Res. Int., 2005, 38, 127–134.
  • 50. Oboh G., Falade A.O., Ademiluyi A.O., Effect of thermal oxidation on the physico-chemical properties, malondialdehyde and carotenoid contents of palm oil. Riv. Ital. Sostanze Gr., 2014, 91 (1), 59–65.
  • 51. O’Brien R., Fats and oils formulating and processing for applications. Formulating and Processing for Applications (3rd ed.). CRC Press. 2008, pp. 37–40.
  • 52. Odia S.J., Ofori S., Maduka O., Palm oil and the heart: A review. World J. Cardiol., 2015, 7 (3), 144–149.
  • 53. Oil World, Oil World Annual, 2013. Retrieved from [http://www. oilworld.biz/app.php], Released June 2013.
  • 54. Olivero-David R., Paduano A., Fogliano V. et al., Effect of thermally oxidized oil and fasting status on the short-term digestibility of ketolinoleic acids and total oxidized fatty acids in rats. J. Agric. Food Chem., 2011, 59, 4684–4691.
  • 55. Ong A.S., Goh S.H., Palm oil: a healthful and cost-effective dietary component. Food Nutr. Bull., 2002, 23, 11–22.
  • 56. Onyeali E.U., Onwuchekwa A.C., Monago C.C., Monanu M.O., Plasma lipid profile of wistar albino rats fed palm oil supplemented diets. Int. J. Biol. Chem. Sci., 2010, 4 (4), 1163–1169.
  • 57. Owen R.W., Giacosa A., Hull W.E., Haubner R., Wurtele G., Spiegelhalder B., Bartsch H., Olive-oil consumption and health: the possible role of antioxidants. Lancet Oncol., 2000, 1, 107–112.
  • 58. Oyewole O.E., Amosu A.M., Public health nutrition concerns on consumption of red palm-oil (RPO): the scientific facts from literature. Afr. J. Med. Med. Sci., 2010, 39, 255–262.
  • 59. Peers K.E., Swoboda P.A.T., Deterioration of sunfl ower oil under simulated frying conditions and during small scale frying of potato chips. J. Sci. Food Agric., 1982, 33 (4), 389–395.
  • 60. Pohanka M., Alzheimer’s disease and oxidative stress: a review. Curr. Med. Chem., 2014, 21 (3), 356–364.
  • 61. Ramana K.V., Srivastava S., Singhal S.S., Lipid peroxidation products in human health and disease. Oxid. Med. Cell Longev., 2013, dx.doi.org/10.1155/2013/583438.
  • 62. Ramond A., Godin-Ribuot D., Ribuot C., Totoson P., Koritchneva I., Cachot S., Levy P., Joyeux-Faure M., Oxidative stress mediates cardiac infarction aggravation induced by intermittent hypoxia. Fundam. Clin. Pharmacol., 2013, 27 (3), 252–261.
  • 63. Rogalski M., Szterk A., Oxidative stability of α-linolenic acid in corn chips enriched with linseed oil pro/antioxidative activity of tocopherol. J. Am. Oil Chem. Soc., 2015, 92 (10), 1461–1471.
  • 64. Sadoudi R., Ammouche A., Ali A.D., Effect of ingestion of thermally oxidized sunfl ower oil on the fatty acid composition and histological alteration of rat liver and adipose tissue in development. Afr. J. Agric. Res., 2013, 8 (24), 3107–3112.
  • 65. Sadoudi R., Ammouche A., Ali A.D., Thermal oxidative alteration of sunfl ower oil. Afr. J. Food Sci., 2014, 8 (3), 116–121.
  • 66. Salar A., Faghih S., Pishdad G.R., Rice bran oil and canola oil improve blood lipids compared to sunfl ower oil in women with type-2 diabetes: a randomized, single-blind controlled trial. J. Clin. Lipidol., 2016, 10, 299–305.
  • 67. Sayon-Orea C., Bes-Rastrollo M., Basterra-Gortari F.J. et al., Consumption of fried foods and weight gain in a Mediterranean cohort: the SUN project. Nutr. Metab. Cardiovasc. Dis., 2013, 23, 144–150.
  • 68. Sayon-Orea C., Martínez-González M.A., Gea A. et al., Consumption of fried foods and risk of metabolic syndrome: the SUN cohort study. Clin. Nutr., 2014, 33, 545–549.
  • 69. Seppanen C.M., Song Q.H., Csallany A.S., The antioxidant functions of tocopherol and tocotrienol homologues in oils, fats and food systems. J. Am. Oil Chem. Soc. 2010, 87, 469–481.
  • 70. Shastry C.S., Patel N.A., Joshi H., Aswathanarayana B.J., Evaluation of effect of reused edible oils on vital organs of wistar rats. Nitte University J. Health Sci., 2011, 1 (4), 10–15.
  • 71. Stocker R., Yamamoto Y., Mc Donagh A.F., Glazer A.N., Ames B.N., Bilirubin is antioxidant of possible physiological importance. Science, 1987, 235, 1043–1046.
  • 72. Szterk A., Rogalski M., Szymborski T., The impact of linseed oil lipids on the physical properties of corn crisps and the possibility of obtaining crisps enriched with n-3 fatty acids. J. Am. Oil Chem. Soc., 2015, 92 (8), 1195–1203.
  • 73. Tripoli E., Giammanco M., Tabacchi G., Di Majo D., Giammanco S., La Guardia M., The phenolic compounds of olive oil: structure, biological activity and benefi cial effects on human health. Nutr. Res. Rev., 2005, 18, 98–112.
  • 74. USDA National Nutrient Database for Standard Reference. 2008; Release 21.
  • 75. Vaskova H., Buckova M., Thermal degradation of vegetable oils: spectroscopic measurement and analysis. Procedia Eng., 2015, 100, 630–635.
  • 76. Wang C., Harris W.S., Chung M., Lichtenstein A.H., Balk E.M., Kupelnick B., Jordan H.S., Lau J., n-3 Fatty acids from fi sh or fi sh-oil supplements, but not alpha-linolenic acid, benefi t cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am. J. Clin. Nutr., 2006, 84 (1), 5–17.
  • 77. Warner K., Chemical and physical reactions in oil during frying. 2004, in: Frying Technology and Practice (eds. M.K. Gupta, K. Warner, P. J. White). AOCS., Champaign, pp. 16–28.
  • 78. Williams M.J., Sutherland W.H., McCormick M.P., de Jong S.A., Walker R.J., Wilkins G.T., Impaired endothelial function following a meal rich in used cooking fat. J. Am. Coll. Cardiol., 1999, 33, 1050–1055.
  • 79. WHO, World Health Organization, Diet nutrition and the prevention of chronic diseases. Report. 2003, 82–88.
  • 80. Yang H., Jin X., Kie Lam C.W., Yan S.K., Oxidative stress and diabetes mellitus. Clin. Chem. Lab. Med., 2011, 49 (11), 1773–1782.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ffe02af5-41ba-4dbf-99da-3dee2de79222
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.