PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 63 | 1 |

Tytuł artykułu

Adaptive strategy to drought conditions: diurnal variation in water use of a Central Asian desert shrub

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Water availability is one of the most important factors limiting photosynthetic assimilation of carbon dioxide and growth of individual plants in terrestrial ecosystems. It is especially important for desert shrubs because the diurnal water availability is particularly sensitive to climate change in arid ecosystems. Water use efficiency (WUE) is an indicator of water availability and is frequently used to assess plant performance in various ecosystems, particularly in arid ecosystems. The WUE of plants has been widely assessed using ecological methods and field measurements; however, these approaches are impractical to obtain numerous near-simultaneous estimates of plant water status at the landscape-scale. Consequently, landscape-scale assessments of plant water status are practically pursued through modeling. In this study, measurement and modeling of the diurnal variations of WUE were conducted for a native dominant desert shrub, Tamarix ramosissima, in its original habitat on the periphery of the Gurbantunggut Desert, China. The diurnal net photosynthesis (An), stomatal conductance (gs), and transpiration (Tr) were measured for each individual using a portable photosynthesis system. A coupled model of stomatal conductance, photosynthesis, and transpiration was applied to simulate the diurnal dynamics of An, gs, Tr, and WUE. The model explained 83, 47, 83, and 55% of the variance in the measured An, gs, Tr, and WUE values, respectively, for this desert ecosystem in which T. ramosissima is sparsely distributed. The results demonstrated that the coupled photosynthesis-stomatal conductance-transpiration model strategy is a promising approach to estimate water availability in desert ecosystems in Central Asia.

Wydawca

-

Rocznik

Tom

63

Numer

1

Opis fizyczny

p.63-76,fig.,ref.

Twórcy

autor
  • Xinjiang Institute of Ecology and Geography, Xinjiang Research Center for Mineral Resources, CAS, Urumqi 830011, China
autor
  • Xinjiang Institute of Ecology and Geography, Xinjiang Research Center for Mineral Resources, CAS, Urumqi 830011, China
autor
  • Xinjiang Institute of Ecology and Geography, Xinjiang Research Center for Mineral Resources, CAS, Urumqi 830011, China
autor
  • Xinjiang Institute of Ecology and Geography, Xinjiang Research Center for Mineral Resources, CAS, Urumqi 830011, China
  • Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan

Bibliografia

  • J.E. Anderson 1982 — Factors controlling transpiration and photosynthesis in Tamarax chinensis lour — Ecology, 63: 48–56.
  • S.K. Arndt, A. Kahmen, C. Arampatsis, M. Popp, M. Adams 2004 — Nitrogen fixation and metabolism by groundwater-dependent perennial plants in a hyperarid desert — Oecologia, 141: 385–394.
  • D. Baldocchi 1994 — A comparative-study of mass and energy-exchange rates over a closed C₃ (wheat) and an open C₄ (corn) crop II CO₂ exchange and water-use efficiency — Agr. Forest. Meteorol. 67: 291–321.
  • J.T. Ball, I.E. Woodrow, J.A. Berry 1987 — A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions — Progress in Photosynthesis Research, 4: 221– 224.
  • C.C. Bennington, J.B. McGraw 1995 — Nature-selection and ecotypic differentiation in Impatiens pallida — Ecol. Monogr. 65: 303–323.
  • C.J. Bernacchi, A.R. Portis, H. Nakano, S. von Caemmerer, S.P. Long 2002 — Temperature response of mesophyll conductance. Implication for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo — Plant Physiol. 130: 1992–1998.
  • P.S. Blicker, B.E. Olson, J.M. Wraith 2003 — Water use and water-use efficiency of the invasive Centaurea maculosa and three native grasses — Plant Soil, 254: 371–381.
  • J.S. Boyer 1982 — Plant productivity and environment — Science, 218: 443–448.
  • D.K. Brian, T.G. Stith, W.T. Isable, K. Slava 1998 — Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers: a global comparison — Oecologia, 114: 153–159.
  • D.E. Busch, S.D. Smith 1995 — Mechanisms associated with decline of woody species in riparian ecosystems of the southwestern US — Ecol. Monogr. 65: 347–370.
  • A. Buyantuyev, J. Wu 2009 — Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix metropolitan region, USA — J. Arid Environ. 73: 512–520.
  • A.N. Callister, S.K. Arndt, M.A. Adams 2006 — Comparison of four methods for measuring osmotic potential of tree leaves — Physiol. Plantarum. 127: 383–392.
  • C.M. Champagne, K. Staenz, A. Bannari, H. McNairn, J.C. Deguise 2003 — Validation of a hyperspectral curve-fitting model for the estimation of plant water content of agricultural canopies — Remote Sens. Environ. 87: 148–160.
  • D. Cohen 1970 — Expected efficiency of water utilization in plants under different competition and selection regimes — Isr. J. Bot. 19: 50–61.
  • G.J. Collatz, J.T. Ball, C. Grivet, J.A. Berry 1991 — Physiological and environmental-regulation of stomatal conductance, photosynthesis and transpiration — a model that includes a laminar boundary-layer — Agr. Forest. Meteorol. 54: 107–136.
  • F.M. Danson, M.D. Steven, T.J. Malthus, J.A. Clark 1992 — High-spectral resolution data for determining leaf water-content — Int. J. Remote. Sens. 13:461–470.
  • X. Deng, X.M. Li, X.M. Zhang 2003 — Studies on gas exchange of Tamarix ramosissima Lbd. — Acta Ecological Sinica, 23: 180–187 (in Chinese with English abstract).
  • S.A. Dudley 1996 — Differing selection on plant physiological traits in response to environmental water availability: A test of adaptive hypotheses — Evolution, 50: 92–102.
  • J.L. Durand, T. Bariac, M. Ghesquiere, P. Biron, P. Richard, M. Humphreys, Z. Zwierzykovski 2007 — Ranking of the depth of water extraction by individual grass plants, using natural O-18 isotope abundance — Environ. Exp. Bot. 60: 137–144.
  • G.D. Farquhar, S.V. Caemmerer, J.A. Berry 1980 — A biochemical-model of photosynthetic CO₂ assimilation in leaves of C-3 species — Planta, 149: 78–90.
  • C. Field, J. Merino, H.A. Mooney 1983 — Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens — Oecologia, 60: 384–389.
  • C.K. Folland, N.A. Rayner, S.J. Brown, T.M. Smith, S.S.P. Shen, D.E. Parker, I. Macadam, P.D. Jones, R.N. Jones, N. Nicholls, D.M.H. Sexton 2001 — Global temperature change and its uncertainties since 1861 — Geophys. Res. Lett. 28: 2621–2624.
  • Q. Gao, M. Yu, X.S. Zhang, H.M. Xu, Y.M. Huang 2005 — Modelling seasonal and diurnal dynamics of stomatal conductance of plants in a semiarid environment — Func. Plant Biol. 32: 583–598.
  • T.J. Givnish 1986 — Biomechanical constraints on self-thinning in plant-populations — J. Theor. Biol. 119: 139–146.
  • E. Glenn, R. Tanner, S. Mendez, T. Kehret, D. Moore, J. Garcia, C. Valdes 1998 — Growth rates, salt tolerance and water use characteristics of native and invasive riparian plants from the delta of the Colorado River, Mexico — J. Arid Environ. 40: 281–294.
  • R.A. Golluscio, M. Oesterheld 2007 — Water use efficiency of twenty-five co-existing Patagonian species growing under different soil water availability — Oecologia, 154: 207–217.
  • X.M. Hao, Y.N. Chen, W.H. Li 2009 — Indicating appropriate groundwater tables for desert river-bank forest at the Tarim River, Xinjiang, China — Environ. Monit. Assess, 152: 167–177.
  • M.S. Heschel, K. Donohue, N. Hausmann, J. Schmitt 2002 — Population differentiation and natural selection for water-use efficiency in Impatiens capensis (Balsaminaceae) — Int. J. Plant Sci. 163: 907–912.
  • T.C. Hsiao 1970 — Rapid changes in levels of polyribosomes in Zea mays in response of water stress — Plant Physiol. 46: 281–285.
  • Z. Iritz, A. Lindroth, M. Heikinheimo, A. Grelle, E. Kellner 1999 — Test of a modified Shuttleworth-Wallace estimate of boreal forest evaporation — Agr. Forest. Meteorol. 98–9: 605–619.
  • N. Katerji, A. Perrier 1983 — A model of actual evapo-transpiration(ETR) for a field of luceren — the role of a crop coefficient — Agronomie 3: 513–521.
  • T. Kenzo, T. Ichie, Y. Watanabe, R. Yoneda, I. Ninomiya, T. Koike 2006 — Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest — Tree. Physiol. 26: 865–873.
  • R. Lal 2004 — Carbon sequestration in soils of central Asia — Land. Degrad. Dev. 15: 563–572.
  • R. Leuning 1990 — Modeling stomatal behavior and photosynthesis of Eucalyptus grandis — Aust. J. Plant Physiol, 17: 159–175.
  • L. Li, G. Lou, X. Chen, Y. Li, H. Xu, J. Bai 2011 — Modelling evapotranspiration in a Central Asian desert ecosystem — Ecol. Model. 20–22: 3680–3691.
  • L. Li, Q. Yu 2007 — Quantifying the effects of advection on canopy energy budgets and water use efficiency in an irrigated wheat field in the North China Plain — Agr. Water Manage. 89: 116–122.
  • L. Li, Q. Yu, Z. Su, der Tol C. van 2009 — A simple method using climatic variables to estimate canopy temperature, sensible and latent heat fluxes in a winter wheat field on the North China Plain — Hydrol. Process. 23: 665–674.
  • L.H. Li, Q. Yu, Y.F. Zheng, J. Wang, Q.X. Fang 2006 — Simulating the response of photosynthate partitioning during vegetative growth in winter wheat to environmental factors — Field. Crop. Res. 96: 133–141.
  • S.P. Long 1991 — Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO₂ concentrations: has its importance been underestimated? — Plant, Cell & Environment, 14: 729–739.
  • Q.L. Ma, J.H. Wang, X.R. Li, S.J. Zhu, H.J. Liu, K.J. Zhan 2009 — Long-term changes of Tamarix vegetation in the oasis-desert ecotone and its driving factors: implication for dryland management — Environ. Earth Sciences, 59: 765–774. doc: 710.1007/s12665-12009-10072-y.
  • B.E. Medlyn, D. Loustau, S. Delzon 2002 — Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal changes in mature maritime pine (Pinus pinaster Ait.) — Plant Cell Environ. 25: 1155–1165.
  • X. Mo, J.M. Chen, W. Ju, T.A. Black 2008 — Optimization of ecosystem model parameters through assimilating eddy covariance flux data with an ensemble Kalman filter — Ecol. Model. 217: 157–173.
  • J.L. Monteith 1965 — Evaporation and environment — Symposia of the Society for Experimental Biology, 19: 205–234.
  • N.T. Nikolov, W.J. Massman, A.W. Schoettle 1995 — Coupling biochemical and biophysical processes at the leaf level: an equilibrium photosynthesis model for leaves of C₃ plants — Ecol. Model. 80: 205–235.
  • H.L. Penman 1948 — Natural evaporation from open water, bare soil and grass — Proceedings of the Royal Society of London Series A — Mathematical and Physical Sciences, 193: 120.
  • C.H.B. Pereira, R.J. Taylor 1972 — On the assessment of surface heat flux and evaporation using large scale parameters — Mon. Weather. Rev. 100: 81–92.
  • V.I. Pyankov, C.C. Black, E.G. Artyusheva, E.V. Voznesenskaya, M.S.B. Ku, G.E. Edwards 1999 — Features of photosynthesis in Haloxylon species of Chenopodiaceae that are dominant plants in Central Asian deserts — Plant Cell Physiol. 40: 125–134.
  • W.P. Quick, M.M. Chaves, R. Wendler, M. David, M.L. Rodrigues, J.A. Passaharinho, J. S. Pereira, M.D. Adcock, R.C. Leegood, M. Stitt 1992 — The effect of water-stress on photosynthetic carbon metabolism in 4 species grown under field conditions — Plant Cell Environ. 15: 25–35.
  • D.W. Schemske 1984 — Population-structure and local selection in Impatiens pallida (Balsaminaceae), a selfing annual — Evolution, 38: 817– 832.
  • P.J. Sellers, D.A. Randall, G.J. Collatz, J.A. Berry, C.B. Field, D.A. Dazlich, C. Zhang, G.D. Collelo, L. Bounoua 1996 — A revised land surface parameterization (SiB2) for atmospheric GCMs .1. Model formulation — J. Climate, 9: 676–705.
  • R.I. Southgate, P. Masters, M.K. Seely 1996 — Precipitation and biomass changes in the Namib Desert dune ecosystem — J. Arid Environ. 33: 267–280.
  • H.C. Stimson, D.D. Breshears, S.L. Ustin, S.C. Kefauver 2005 — Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma — Remote Sens. Environ. 96: 108–118.
  • K. Tanaka, Y. Kosugi, A. Nakamura 2002 — Impact of leaf physiological characteristics on seasonal variation in CO₂, latent and sensible heat exchanges over a tree plantation — Agr. Forest. Meteorol. 114: 103–122.
  • C. Tinoco-Ojanguren 2008 — Diurnal and seasonal patterns of gas exchange and carbon gain contribution of leaves and stems of Justicia californica in the Sonoran Desert — J. Arid Environ. 72: 127–140.
  • N.L. Toft, J.E. Anderson, R.S. Nowak 1989 — Water-use efficiency and carbon isotope composition of plants in a cold desert environment — Oecologia, 80: 11–18.
  • N.C. Turner 1981 — Techniques and experimental approaches for the measurement of plant water status — Plant Soil, 58: 339–366.
  • S. Wang, X. Chen, Q. Wang, P. Li, X. Cao 2012. — Identification of the best spectral indices to remotely trace the diurnal course of water use efficiency of Tamarix ramosissima in the Gurbantunggut Desert, China — Environmental Earth Sciences, 65: 11–20.
  • A. Wolf, K. Akshalov, N. Saliendra, D.A. Johnson, E.A. Laca 2006 — Inverse estimation of Vc(max), leaf area index, and the Ball-Berry parameter from carbon and energy fluxes — Journal of Geophysical Research — Atmospheres, 111.
  • G.Q. Xu, Y. Li 2008 — Rooting depth and leaf hydraulic conductance in the xeric tree Haloxyolon ammodendron growing at sites of contrasting soil texture — Funct. Plant Biol. 35: 1234–1242.
  • H. Xu, Y. Li 2006 — Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events — Plant Soil, 285: 5–17.
  • H. Xu, Y. Li, G.Q. Xu, T. Zou 2007 — Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation — Plant Cell Environ. 30: 399–409.
  • W.k. Yang, D.Y. Zhang, L.Y. Zhang 2004 — Distribution and cluster analysis on the similarity of the Tamarix communities in Xinjiang — Arid Land Geography, 27: 186–192 (in Chinese with English abstract).
  • X. Yin, P.C. Struik 2009 — C(3) and C(4) photosynthesis models: An overview from the perspective of crop modelling — Njas-Wageningen Journal of Life Sciences, 57: 27–38.
  • S.F. Yuan, H.P. Tang, Y.C. Yan 2009 — Photosynthetic characteristics of spring ephemerals in the desert ecosystem of Dzungaria Basin, northwest China — Environ. Earth Sci. 59: 501–510.
  • A.R. Zangerl, F.A. Bazzaz 1984 — Effects of short-term selection along environmental groadients on variation in populations of Amaranthus retroflexus and Abutilon theophrasti — Ecology, 65: 207–217.
  • F.J. Zeng, F. Andrea, X.Y. Li 2002 — A preliminary study on the effect of irrigation on water physiology of Tamarix ramosisssima in Cele oasis — Chin. J. Applied Ecol. 13: 849–853 (in Chinese with English abstract).
  • T. Zou, Y. Li, H. Xu, G.-Q. Xu 2010 — Responses to precipitation treatment for Haloxylon ammodendron growing on contrasting textured soils — Ecol. Res. 25: 185–194.

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-ffd40902-dd26-4a68-91f2-7bb7432bb6eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.