PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 23 | 2 |

Tytuł artykułu

Performance analysis of multipupose refrigeration system (MRS) of fishing vessel

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The use of efficient refrigerator/freezers helps considerably to reduce the amount of the emitted greenhouse gas. A two-circuit refrigerator-freezer cycle (RF) reveals a higher energy saving potential than a conventional cycle with a single loop of serial evaporators, owing to pressure drop in each evaporator during refrigeration operation and low compression ratio. Therefore, several industrial applications and fish storage systems have been utilized by using multipurpose refrigeration cycle. That is why a theoretical performance analysis based on the exergetic performance coefficient, coefficient of performance (COP), exergy efficiency and exergy destruction ratio criteria, has been carried out for a multipurpose refrigeration system by using different refrigerants in serial and parallel operation conditions. The exergetic performance coefficient criterion is defined as the ratio of exergy output to the total exergy destruction rate (or loss rate of availability). According to the results of the study, the refrigerant R32 shows the best performance in terms of exergetic performance coefficient, COP, exergy efficiency, and exergy destruction ratio from among the other refrigerants (R1234yf, R1234ze, R404A, R407C, R410A, R143A and R502). The effects of the condenser, freezerevaporator and refrigerator-evaporator temperatures on the exergetic performance coefficient, COP, exergy efficiency and exergy destruction ratios have been fully analyzed for the refrigerant R32

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

2

Opis fizyczny

p.48-56,fig.,ref.

Twórcy

autor
  • Department of Naval Architecture, Yildiz Technical University, Besiktas 34349, Istanbul, Turkey
  • Department of Naval Architecture, Yildiz Technical University, Besiktas 34349, Istanbul, Turkey
autor
  • Department of Naval Architecture, Yildiz Technical University, Besiktas 34349, Istanbul, Turkey

Bibliografia

  • 1. Y. A. Çengel, Heat and Mass Transfer: A Practical Approach, 3rd ed. Online: McGraw-Hill Higher Education, 2007.
  • 2. A. I. Gan, S. A. Klein, and D. T. Reindl, “Analysis of Refrigerator / Freezer Appliances Having Dual Refrigeration Cycles,” Ashrae Trans., vol. 106, no. 2, pp. 1–7, 2000.
  • 3. W. J. Yoon, H. W. Jung, H. J. Chung, and Y. Kim, “Performance optimization of a two-circuit cycle with parallel evaporators for a domestic refrigerator–freezer,” Int. J. Refrig., vol. 34, no. 1, pp. 216–224, Jan. 2011.
  • 4. G. Ding, C. Zhang, and Z. Lu, “Dynamic simulation of natural convection bypass two-circuit cycle refrigerator– freezer and its application: Part I: Component models,” Appl. Therm. Eng., vol. 24, no. 10, pp. 1513–1524, Jul. 2004.
  • 5. Z. Lu, G. Ding, and C. Zhang, “Dynamic simulation of natural convection bypass two-circuit cycle refrigerator– freezer and its application: Part II: System simulation and application,” Appl. Therm. Eng., vol. 24, no. 10, pp. 1525–1533, Jul. 2004.
  • 6. M. Lavanis, I. Haider, and R. Radermacher, “Experimental investigation of an alternating evaporator duty refrigerator/ freezer,” presented at the ASHRAE Transactions, Toronto, 1998, vol. 104.
  • 7. S. Won, D. Jung, and R. Radermacher, “An experimental study of the performance of a dual-loop refrigerator freezer system,” Int. J. Refrig., vol. 17, no. 6, pp. 411–416, Jul. 1994.
  • 8. W. J. Yoon, K. Seo, H. J. Chung, and Y. Kim, “Performance optimization of dual-loop cycles using R-600a and hydrocarbon mixtures designed for a domestic refrigeratorfreezer,” Int. J. Refrig., vol. 35, no. 6, pp. 1657–1667, Sep. 2012.
  • 9. J. C. Bare, C. L. Gage, R. R, and J. D.S., “Simulation of nonazeotropic refrigerant mixtures for use in a dual-circuit refrigerator/freezer with countercurrent heat exchanges,” 1991.
  • 10. J. C. Bare, “Simulation Results of Single Refrigerants for Use in Dual-Circuit Refrigerator/Freezer,” J. Air Waste Manag. Assoc., vol. 42, no. 2, pp. 185–186, 1992.
  • 11. W. J. Yoon, H. W. Jung, H. J. Chung, and Y. Kim, “An Experimental Study on the Performance of a Two Circuit Cycle with Parallel Evaporators for a Domestic Refrigerator-Freezer.”
  • 12. K. Kim, B. Kopko, and R. Radermacher, “Application of tandem system to high-efficiency refrigerator/freezer,” presented at the ASHRAE Transactions, 1995, vol. 101, p. 2.
  • 13. Y. Joo, Y. Kim, M. Lee, W. Yoon, and Y. Kim, “Performance Characteristics of a Household Refrigerator with Dual Evaporators Using Two-Stage Compression Cycle,” Int. J. Air-Cond. Refrig., vol. 17, no. 3, pp. 107–113, 2009.
  • 14. X. Wang and J. Yu, “An experimental investigation on a novel ejector enhanced refrigeration cycle applied in the domestic refrigerator-freezer,” Energy, vol. 93, Part 1, pp. 202–209, Dec. 2015.
  • 15. M. Yang, C. W. Jung, and Y. T. Kang, “Development of high efficiency cycles for domestic refrigerator-freezer application,” Energy, vol. 93, Part 2, pp. 2258–2266, Dec. 2015.
  • 16. Z. Lu and G. Ding, “Temperature and time-sharing running combination control strategy of two-circuit cycle refrigerator–freezer with parallel evaporators,” Appl. Therm. Eng., vol. 26, no. 11–12, pp. 1208–1217, Aug. 2006.
  • 17. C. J. L. Hermes and C. Melo, “A first-principles simulation model for the start-up and cycling transients of household refrigerators,” Int. J. Refrig., vol. 31, no. 8, pp. 1341–1357, Dec. 2008.
  • 18. C. J. L. Hermes, C. Melo, F. T. Knabben, and J. M. Gonçalves, “Prediction of the energy consumption of household refrigerators and freezers via steady-state simulation,” Appl. Energy, vol. 86, no. 7–8, pp. 1311–1319, Jul. 2009.
  • 19. Y. S. S. Esmail M. A. Mokheimer, “Comparative Analysis of Different Configuration Domestic Refrigerators: A Computational Fluid Dynamics Approach,” J. Energy Resour. Technol., vol. 137, no. 6, p. 062002, 2015.
  • 20. J. R. Sand, C. L. Rice, and E. A. Vineyard, “Alternative Refrigerants and Refrigeration Cycles for Domestic Refrigerators,” Oak Ridge National Lab., TN (United States), ORNL/M--2270, Dec. 1992.
  • 21. M. VISEK, “Study of innovative techniques aimed at reducing energy consumption in domestic refrigeration system,” 05-Mar-2013. Available: https://www.politesi. polimi.it/handle/10589/74911.
  • 22. M. Visek, C. M. Joppolo, L. Molinaroli, and A. Olivani, “Advanced sequential dual evaporator domestic refrigerator/ freezer: System energy optimization,” Int. J. Refrig., vol. 43, pp. 71–79, Jul. 2014.
  • 23. J. M. Gonçalves, C. Melo, and C. J. L. Hermes, “A semiempirical model for steady-state simulation of household refrigerators,” Appl. Therm. Eng., vol. 29, no. 8–9, pp. 1622–1630, Jun. 2009.
  • 24. Y. Üst and A. S. Karakurt, “Analysis of a Cascade Refrigeration System (CRS) by Using Different Refrigerant Couples Based on the Exergetic Performance Coefficient (EPC) Criterion,” Arab. J. Sci. Eng., vol. 39, no. 11, pp. 8147–8156, Nov. 2014.
  • 25. Yunus A. Çengel and Michael A. Boles, Thermodynamics An Angineering Approach, 5th ed. McGraw-Hill Higher Education, 2006.
  • 26. T. J. Kotas, The exergy method of thermal plant analysis. Butterworths, 1985.
  • 27. Y. Ust, A. V. Akkaya, and A. Safa, “Analysis of a vapour compression refrigeration system via exergetic performance coefficient criterion,” J. Energy Inst., vol. 84, no. 2, pp. 66–72, May 2011.
  • 28. A. Bejan and M. J. Moran, Thermal Design and Optimization. John Wiley & Sons, 1996.
  • 29. “ASHRAE Handbook-Fundamentals,” in Designation and safety classification of refrigerants, ASHRAE, 2007, pp. 8–12.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ffd2dc88-47a4-41d9-93d4-0f601061328c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.