PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2010 | 69 | 1 |

Tytuł artykułu

The myoepithelial cell: its role in normal mammary glands and breast cancer

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Mammary gland epithelium is composed of an inner layer of secretory cells (luminal) and an outer layer of myoepithelial cells (MEC) bordering the basal lamina which separates the epithelial layer from the extracellular matrix. Mature MECs morphologically resemble smooth muscle cells; however, they exhibit features typical for epithelial cells, such as the presence of specific cytokeratin filaments. During lactation, secretory cells synthesize milk components, which are collected in alveoli and duct lumen, and transported to the nipple as a result of MEC contraction. Although the induction of MEC contraction results from oxytocin action, also other, still unknown auto/paracrine mechanisms participate in the regulation of this process. As well as milk ejection, MECs are involved in mammary gland morphogenesis in all developmental stages, modulating proliferation and differentiation of luminal cells. They take part in the formation of extracellular matrix, synthesizing its components and secreting proteinases and their inhibitors. In addition, MECs are regarded as natural cancer suppressors, stabilizing the normal structure of the mammary gland, they secrete suppressor proteins (e.g. maspin) limiting cancer growth, invasiveness, and neoangiogenesis. The majority of malignant breast cancers are derived from luminal cells, whereas neoplasms of MEC origin are the most seldom and usually benign form of breast tumours. MECs are markedly resistant to malignant transformation and they are able to suppress the transformation of neigh boring luminal cells. Therefore, a deeper insight into the role of MECs in the physiology and pathology of mammary glands would allow a better understanding of cancerogenesis mechanisms and possible application of specific MEC markers in the diagnosis and therapy of breast cancer. (Folia Morphol 2010; 69, 1: 1–14)

Wydawca

-

Czasopismo

Rocznik

Tom

69

Numer

1

Opis fizyczny

p.1-14,fig.,ref.

Twórcy

autor
  • Department of Histology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wroclaw, Poland

Bibliografia

  • 1. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6: 17–32.
  • 2. Alpaugh ML, Lee MC, Nguyen M, Deato M, Dishakjian L, Barsky SH (2000) Myoepithelial-specific CD44 shedding contributes to the anti-invasive and antiangiogenic phenotype of myoepithelial cells. Exp Cell Res, 261: 150–158.
  • 3. Alvi AJ, Clayton H, Joshi C, Enver T, Ashworth A, Vivanco MM, Dale TC, Smalley MJ (2003) Functional and molecular characterisation of mammary side population cells. Breast Cancer Res, 5: R1–R8.
  • 4. Bailey CM, Khalkhali-Ellis Z, Seftor EA, Hendrix MJ (2006) Biological functions of maspin. J Cell Physiol, 209: 617–624.
  • 5. Barbareschi M, Pecciarini L, Cangi MG, Macri E, Rizzo A, Viale G, Doglioni C (2001) p63, a p53 homologue, is a selective nuclear marker of myoepithelial cells of the human breast. Am J Surg Pathol, 25: 1054–1060.
  • 6. Barsky SH, Karlin NJ (2006) Mechanisms of disease: breast tumor pathogenesis and the role of the myoepithelial cell. Nat Clin Pract Oncol, 3: 138–151.
  • 7. Barsky SH, Karlin NJ (2005) Myoepithelial cells: autocrine and paracrine suppressors of breast cancer progression. J Mammary Gland Biol Neoplasia, 10: 249–260.
  • 8. Benson GK, Folley SJ (1957) The effect of oxytocin on mammary gland involution in the rat. J Endocrinol, 16: 189–201.
  • 9. Bocker W, Burger H, Buchwalow IB, Decker T (2005) Ck5-positive cells are precursor cells of glandular and myoepithelial cell lineages in the human breast epithelium. A new cell concept as a basis for a better understanding of proliferative breast disease? Verh Dtsch Ges Pathol, 89: 45–47.
  • 10. Bose S, Derosa CM, Ozzello L (1999) Immunostaining of Type IV collagen and smooth muscle actin as an aid in the diagnosis of breast lesions. Breast J, 5: 194–201.
  • 11. Breton C, Di Scala-Guenot D, Zingg HH (2001) Oxytocin receptor gene expression in rat mammary gland: structural characterization and regulation. J Mol Endocrinol, 27: 175–189.
  • 12. Cassoni P, Sapino A, Marrocco T, Chini B, Bussolati G (2004) Oxytocin and oxytocin receptors in cancer cells and proliferation. J Neuroendocrinol, 16: 362–364.
  • 13. Clarke RB (2006) Ovarian steroids and the human breast: regulation of stem cells and cell proliferation. Maturitas, 54: 327–334.
  • 14. Dabbs DJ, Gown AM (1999) Distribution of calponin and smooth muscle myosin heavy chain in fine-needle aspiration biopsies of the breast. Diagn Cytopathol, 20: 203–207.
  • 15. Daniel CW, Strickland P, Friedmann Y (1995) Expression and functional role of E-and P-cadherins in mouse mammary ductal morphogenesis and growth. Dev Biol, 169: 511–519.
  • 16. Dunbar ME, Dann P, Brown CW, Van Houton J, Dreyer B, Philbrick WP, Wysolmerski JJ (2001) Temporally regulated overexpression of parathyroid hormone-related protein in the mammary gland reveals distinct fetal and pubertal phenotypes. J Endocrinol, 171: 403–416.
  • 17. Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT, Eaves CJ (2008) A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med, 14: 1384–1389.
  • 18. Emberley ED, Murphy LC, Watson PH (2004) S100A7 and the progression of breast cancer. Breast Cancer Res, 6: 153–159.
  • 19. Fabre A, McCann AH, O’Shea D, Broderick D, Keating G, Tobin B, Gorey T, Dervan PA (1999) Loss of heterozygosity of the Wilms’ tumor suppressor gene (WT1) in in situ and invasive breast carcinoma. Hum Pathol, 30: 661–665.
  • 20. Faraldo MM, Taddei-De La Hosseraye I, Teuliere J, Deugnier MA, Moumen M, Thiery JP, Glukhova MA (2006) Mammary gland development: role of basal myoepithelial cells. J Soc Biol, 200: 193–198.
  • 21. Garrod DR, Merritt AJ, Nie Z (2002) Desmosomal cadherins. Curr Opin Cell Biol, 14: 537–545
  • 22. Gudjonsson T, Adriance MC, Sternlicht MD, Petersen OW, Bissell MJ (2005) Myoepithelial cells: their origin and function in breast morphogenesis and neoplasia. J Mammary Gland Biol Neoplasia, 10: 261–272.
  • 23. Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW (2002) Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci, 115: 39–50.
  • 24. Han AC, Soler AP, Knudsen KA, Salazar H (1999) Distinct cadherin profiles in special variant carcinomas and other tumors of the breast. Hum Pathol, 30: 1035–1039.
  • 25. Hardman MJ, Liu K, Avilion AA, Merritt A, Brennan K, Garrod DR, Byrne C (2005) Desmosomal cadherin misexpression alters beta-catenin stability and epidermal differentiation. Mol Cell Biol, 25: 969–978.
  • 26. Hasegawa M, Hagiwara S, Sato T, Jijiwa M, Murakumo Y, Maeda M, Moritani S, Ichihara S, Takahashi M (2007) CD109, a new marker for myoepithelial cells of mammary, salivary, and lacrimal glands and prostate basal cells. Pathol Int, 57: 245–250.
  • 27. Jenkinson SR, Barraclough R, West CR, Rudland PS (2004) S100A4 regulates cell motility and invasion in an in vitro model for breast cancer metastasis. Br J Cancer, 90: 253–262.
  • 28. Jolicoeur F, Seemayer TA, Gabbiani G, Robidoux A, Gaboury L, Oligny LL, Schurch W (2002) Multifocal, nascent, and invasive myoepithelial carcinoma (malignant myoepithelioma) of the breast: an immunohistochemical and ultrastructural study. Int J Surg Pathol, 10: 281–291.
  • 29. Jones C, Nonni AV, Fulford L, Merrett S, Chaggar R, Eusebi V, Lakhani SR (2001) CGH analysis of ductal carcinoma of the breast with basaloid/myoepithelial cell differentiation. Br J Cancer, 85: 422–427.
  • 30. Jones JL, Shaw JA, Pringle JH, Walker RA (2003) Primary breast myoepithelial cells exert an invasion-suppressor effect on breast cancer cells via paracrine downregulation of MMP expression in fibroblasts and tumour cells. J Pathol, 201: 562–572.
  • 31. Jones S, Clark G, Koleszar S, Ethington G, Mennel R, Paulson S, Brooks B, Kerr R, Denham C, Savin M, White C, Blum J, Kirby R, Stone M, Pippen J, Kitchens L, George T, Cooper B, Peters G, Knox S, Grant M, Cheek H, Jones R, Kuhn J, Lieberman Z, Savino D, Rietz C (2001) Low proliferative rate of invasive node-negative breast cancer predicts for a favorable outcome: a prospective evaluation of 669 patients. Clin Breast Cancer, 1: 310–314 (discussion 315–317).
  • 32. Kasami M, Olson SJ, Simpson JF, Page DL (1998) Maintenance of polarity and a dual cell population in adenoid cystic carcinoma of the breast: an immunohistochemical study. Histopathology, 32: 232–238.
  • 33. Koukoulis GK, Howeedy AA, Korhonen M, Virtanen I, Gould VE (1993) Distribution of tenascin, cellular fibronectins and integrins in the normal, hyperplastic and neoplastic breast. J Submicrosc Cytol Pathol, 25: 285–295.
  • 34. Lakhani SR, O’Hare MJ (2001) The mammary myoepithelial cell: Cinderella or ugly sister? Breast Cancer Res, 3: 1–4.
  • 35. Lakhani SR, Van De Vijver MJ, Jacquemier J, Anderson TJ, Osin PP, McGuffog L, Easton DF (2002) The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol, 20: 2310–2318.
  • 36. Lazard D, Sastre X, Frid MG, Glukhova MA, Thiery JP, Koteliansky VE (1993) Expression of smooth musclespecific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue. Proc Natl Acad Sci USA, 90: 999–1003.
  • 37. Lee MC, Alpaugh ML, Nguyen M, Deato M, Dishakjian L, Barsky SH (2000) Myoepithelial-specific CD44 shedding is mediated by a putative chymotrypsin-like sheddase. Biochem Biophys Res Commun, 279: 116–123.
  • 38. Liu QY, Niranjan B, Gomes P, Gomm JJ, Davies D, Coombes RC, Buluwela L (1996) Inhibitory effects of activin on the growth and morpholgenesis of primary and transformed mammary epithelial cells. Cancer Res, 56: 1155–1163.
  • 39. Malzahn K, Mitze M, Thoenes M, Moll R (1998) Biological and prognostic significance of stratified epithelial cytokeratins in infiltrating ductal breast carcinomas. Virchows Arch, 433: 119–129.
  • 40. Man YG, Zhang Y, Shen T, Zeng X, Tauler J, Mulshine JL, Strauss BL (2005) cDNA expression profiling reveals elevated gene expression in cell clusters overlying focally disrupted myoepithelial cell layers: implications for breast tumor invasion. Breast Cancer Res Treat, 89: 199–208.
  • 41. McGowan KM, Coulombe PA (1998) Onset of keratin 17 expression coincides with the definition of major epithelial lineages during skin development. J Cell Biol, 143: 469–486.
  • 42. Miettinen MM, Sarlomo-Rikala M, Kovatich AJ, Lasota J (1999) Calponin and h-caldesmon in soft tissue tumors: consistent h-caldesmon immunoreactivity in gastrointestinal stromal tumors indicates traits of smooth muscle differentiation. Mod Pathol, 12: 756–762.
  • 43. Moore DM, Vogl AW, Baimbridge K, Emerman JT (1987) Effect of calcium on oxytocin-induced contraction of mammary gland myoepithelium as visualized by NBD-phallacidin. J Cell Sci, 88 (Part 5): 563–569.
  • 44. Moritani S, Kushima R, Sugihara H, Bamba M, Kobayashi TK, Hattori T (2002) Availability of CD10 immunohistochemistry as a marker of breast myoepithelial cells on paraffin sections. Mod Pathol, 15: 397–405.
  • 45. Nakano H, Furuya K, Furuya S, Yamagishi S (1997) Involvement of P2-purinergic receptors in intracellular Ca2+ responses and the contraction of mammary myoepithelial cells. Pflugers Arch, 435: 1–8.
  • 46. Nakano H, Furuya K, Yamagishi S (2001) Synergistic effects of ATP on oxytocin-induced intracellular Ca2+ response in mouse mammary myoepithelial cells. Pflugers Arch, 442: 57–63.
  • 47. Neville MC, McFadden TB, Forsyth I (2002) Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia, 7: 49–66.
  • 48. Nguyen M, Lee MC, Wang JL, Tomlinson JS, Shao ZM, Alpaugh ML, Barsky SH (2000) The human myoepithelial cell displays a multifaceted anti-angiogenic phenotype. Oncogene, 19: 3449–3459.
  • 49. Odero-Marah VA, Khalkhali-Ellis Z, Chunthapong J, Amir S, Seftor RE, Seftor EA, Hendrix MJ (2003) Maspin regulates different signaling pathways for motility and adhesion in aggressive breast cancer cells. Cancer Biol Ther, 2: 398–403.
  • 50. Olins GM, Bremel RD (1984) Oxytocin-stimulated myosin phosphorylation in mammary myoepithelial cells: roles of calcium ions and cyclic nucleotides. Endocrinology, 114: 1617–1626.
  • 51. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature, 406: 747–752.
  • 52. Pettibone DJ, Woyden CJ, Totaro JA (1990) Identification of functional oxytocin receptors in lactating rat mammary gland in vitro. Eur J Pharmacol, 188: 235–241.
  • 53. Radice GL, Ferreira-Cornwell MC, Robinson SD, Rayburn H, Chodosh LA, Takeichi M, Hynes RO (1997) Precocious mammary gland development in P-cadherin-deficient mice. J Cell Biol, 139: 1025–1032.
  • 54. Reis-Filho JS, Milanezi F, Silva P, Schmitt FC (2001) Maspin expression in myoepithelial tumors of the breast. Pathol Res Pract, 197: 817–821.
  • 55. Reversi A, Cassoni P, Chini B (2005) Oxytocin receptor signaling in myoepithelial and cancer cells. J Mammary Gland Biol Neoplasia, 10: 221–229.
  • 56. Reversi A, Rimoldi V, Brambillasca S, Chini B (2006) Effects of cholesterol manipulation on the signaling of the human oxytocin receptor. Am J Physiol Regul Integr Comp Physiol, 291: R861–R869.
  • 57. Runswick SK, O’Hare MJ, Jones L, Streuli CH, Garrod DR (2001) Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nat Cell Biol, 3: 823–830.
  • 58. Sapino A, Macri L, Tonda L, Bussolati G (1993) Oxytocin enhances myoepithelial cell differentiation and proliferation in the mouse mammary gland. Endocrinology, 133: 838–842.
  • 59. Scharnhorst V, van der Eb AJ, Jochemsen AG (2001) WT1 proteins: functions in growth and differentiation. Gene, 273: 141–161.
  • 60. Seitz PK, Cooper KM, Ives KL, Ishizuka J, Townsend CM, Jr., Rajaraman S, Cooper CW (1993) Parathyroid hormonerelated peptide production and action in a myoepithelial cell line derived from normal human breast. Endocrinology, 133: 1116–1124.
  • 61. Shao ZM, Radziszewski WJ, Barsky SH (2000) Tamoxifen enhances myoepithelial cell suppression of human breast carcinoma progression in vitro by two different effector mechanisms. Cancer Lett, 157: 133–144.
  • 62. Sheng S (2006) A role of novel serpin maspin in tumor progression: the divergence revealed through efforts to converge. J Cell Physiol, 209: 631–635.
  • 63. Simpson PT, Gale T, Reis-Filho JS, Jones C, Parry S, Steele D, Cossu A, Budroni M, Palmieri G, Lakhani SR (2004) Distribution and significance of 14-3-3sigma, a novel myoepithelial marker, in normal, benign, and malignant breast tissue. J Pathol, 202: 274–285.
  • 64. Smith GH, Chepko G (2001) Mammary epithelial stem cells. Microsc Res Tech, 52: 190–203.
  • 65. Sopel M, Lis A (2000) Coexpression of PTHrP and PTH/PTHrP receptor in a myoepithelial cell line derived from normal human breast. Folia Histochem Cytobiol, 38: 65–69.
  • 66. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA, 98: 10869–10874.
  • 67. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA, 100: 8418–8423.
  • 68. Srinivasan K, Strickland P, Valdes A, Shin GC, Hinck L (2003) Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis. Dev Cell, 4: 371–382.
  • 69. Stephenson JM, Banerjee S, Saxena NK, Cherian R, Banerjee SK (2002) Neuropilin-1 is differentially expressed in myoepithelial cells and vascular smooth muscle cells in preneoplastic and neoplastic human breast: a possible marker for the progression of breast cancer. Int J Cancer, 101: 409–414.
  • 70. Sternlicht MD, Kedeshian P, Shao ZM, Safarians S, Barsky SH (1997) The human myoepithelial cell is a natural tumor suppressor. Clin Cancer Res, 3: 1949–1958.
  • 71. Stingl J (2009) Detection and analysis of mammary gland stem cells. J Pathol, 217: 229–241.
  • 72. Stingl J, Eaves CJ, Zandieh I, Emerman JT (2001) Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat, 67: 93–109.
  • 73. Tobacman JK, Hinkhouse M, Khalkhali-Ellis Z (2002) Steroid sulfatase activity and expression in mammary myoepithelial cells. J Steroid Biochem Mol Biol, 81: 65–68.
  • 74. Tsuda H, Takarabe T, Hasegawa F, Fukutomi T, Hirohashi S (2000) Large, central acellular zones indicating myoepithelial tumor differentiation in high-grade invasive ductal carcinomas as markers of predisposition to lung and brain metastases. Am J Surg Pathol, 24: 197–202.
  • 75. Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, Bissell MJ, Petersen OW (2007) Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol, 177: 87–101.
  • 76. Wada T, Yasutomi M, Hashmura K, Kunikata M, Tanaka T, Mori M (1992) Vimentin expression in benign and malignant lesions in the human mammary gland. Anticancer Res, 12: 1973–1982.
  • 77. Wagner KU, Young WS, 3rd, Liu X, Ginns EI, Li M, Furth PA, Hennighausen L (1997) Oxytocin and milk removal are required for post-partum mammary-gland development. Genes Funct, 1: 233–244.
  • 78. Wetzels RH, Kuijpers HJ, Lane EB, Leigh IM, Troyanovsky SM, Holland R, van Haelst UJ, Ramaekers FC (1991) Basal cell-specific and hyperproliferation-related keratins in human breast cancer. Am J Pathol, 138: 751–763.
  • 79. Wockel A, Baum O, Planitzer G, Rothen-Rutishauser B, Gossrau R, Abou-Dakn M (2005) Constitutive coexpression of nitric oxide synthase-1 and soluble guanylyl cyclase in myoepithelial cells of mammary glands in mice. Cells Tissues Organs, 180: 178–184.
  • 80. Woodward WA, Chen MS, Behbod F, Rosen JM (2005) On mammary stem cells. J Cell Sci, 118: 3585–3594.
  • 81. Wysolmerski JJ, McCaughern-Carucci JF, Daifotis AG, Broadus AE, Philbrick WM (1995) Overexpression of parathyroid hormone-related protein or parathyroid hormone in transgenic mice impairs branching morphogenesis during mammary gland development. Development, 121: 3539–3547.
  • 82. Yamamoto T, Oda K, Miyazaki K, Ichigotani Y, Takenouchi Y, Kamei T, Shirafuji N, Nimura Y, Hamaguchi M, Matsuda S (2001) p73 is highly expressed in myoepithelial cells and in carcinomas with metaplasia. Int J Oncol, 19: 271–276.
  • 83. Zhang M, Magit D, Botteri F, Shi HY, He K, Li M, Furth P, Sager R (1999) Maspin plays an important role in mammary gland development. Dev Biol, 215: 278–287.
  • 84. Zhang M, Volpert O, Shi YH, Bouck N (2000) Maspin is an angiogenesis inhibitor. Nat Med, 6: 196–199.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ff41654d-f99c-45b1-a201-0acf8431f0cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.