PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 1 |

Tytuł artykułu

Agricultural net carbon effect and agricultural carbon sink compensation mechanism in hotan prefecture, China

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Agriculture is one of the main sources of anthropogenic greenhouse gases on the earth, but it also serves as a carbon sink, which has great potential for greenhouse gas absorption. Based on the scientific calculation system of carbon emissions and carbon sinks in agriculture, we calculated the carbon emissions and carbon sinks of agriculture using data from Hotan Prefecture for the period 1999-2014. The results showed that the net carbon sink (total carbon sinks and total carbon emissions) showed a stable increase trend in Hotan during 1999-2014. The carbon sinks level of agriculture in Hotan prefecture is more than three times of that in China and more than two times that in Xinjiang. Thus, the agricultural carbon sinks function of Hotan is obvious. To realize sustainable agricultural development and to transform agricultural carbon sinks into the power to promote regional economic development, we established the ecological compensation mechanism of agricultural carbon sinks from the aspects of the main body of compensation, compensation principle, compensation method, and compensation standard within the premise of the ecological function of carbon sinks in agriculture. We use the net carbon sinks amount multiplied by the unit price of carbon sinks to obtain the amount of agricultural carbon sinks compensation in this paper. Compensation methods include government compensation and market compensation. Government compensation mainly comprises financial, material, policy, and technical compensation. Market compensation mainly uses the carbon trading platform to compensate for the net carbon sinks of agriculture.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

1

Opis fizyczny

p.365-373,fig.,ref.

Twórcy

autor
  • Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
autor
  • Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
autor
  • Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
  • University of Chinese Academy of Sciences, Beijing 100049, China

Bibliografia

  • 1. IPCC. Climate change 2007: Mitigation of climate change. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change Cambridge. Cambridge University Press, London, 2007.
  • 2. XIONG C.H., YANG D.G., HUO J.W. Spatial-temporal characteristics and LMDI-based impact factor decomposition of agricultural carbon emissions in Hotan Prefecture, China. Sustainability. 8 (3), 262:1-14, 2016.
  • 3. NORSE D. Low carbon agriculture: objectives and policy pathways. Environment Development. 59, 25, 2012.
  • 4. TIAN Y., ZHANG J.B., LI B. Agricultural carbon emissions in China: calculation, spatial- temporal comparison and decoupling effects. Resources Science. 34 (11), 2097, 2012.
  • 5. XIA Q.L. Based on the carbon sink of agricultural development mode transition study. Ecological economy. 10, 106, 2010.
  • 6. USEPA. Inventory of U.S. greenhouse gas emissions and sinks: 1990-2007. EPA 430-R-09-004. USEPA, Washington, DC, 2009.
  • 7. COLE C.V. Agricultural Options for Mitigation of Greenhouse Gas Emission.WATSON R.T., ZNYOWERA M.C., MOSS R.H. Climate Change 1995-Impacts Adaptions and Mitigation of Climate Change Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 1, 1996.
  • 8. LAL R., KIMBLE J.M., FOLLETT R.F., COLE C. . The Potential of US Cropland to Sequester Carbon and Mitigate the Greenhouse Effect. ChelseaMI: Sleeping Bear Press. 128, 1998.
  • 9. JOHNSON JANE M.F. Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution. 150, 107, 2007.
  • 10. RAY MASSEY, ANN ULMER. Agriculture and greenhouse gas emissions [EB /OL].http://extension.missouri.edu/p/G310, 2010-08-16 /2012-07-28.
  • 11. BRENTRUP F., PALLIERE C. GHG emissions and energy efficiency in European nitrogen fertiliser production and use. In: Proceedings of International Fertiliser Society Conference, Cambridge, 11 December 2008. International Fertiliser Society, York, UK, 2008.
  • 12. JARI L., DANIEL P., TIMO K. Increasing carbon stocks in the forest soils of western Europe. Forest Ecology and Management, 169 (1), 159, 2002.
  • 13. TIAN Y., LI B., ZHANG J.B. Research on stage characteristics and factor decomposition of agricultural land carbon emission in China. Journal of China University of Geosciences: Social Sciences Edition. 11 (1), 59, 2011.
  • 14. LI G.Z., LI Z.Z. Carbon emissions decomposition analysis on agricultural energy consumption – Based LMDI model. Journal of Agro technical Economics. 10, 66, 2010.
  • 15. HU X.D., WANG J.M. Estimation of livestock greenhouse gases discharge in China. Transactions of the CSAE. 26 (10), 247, 2010.
  • 16. DUAN H.P., ZHANG Y., ZHAO J.B., BIAN X.M. Carbon footprint analysis of farmland ecosystem in China. Journal of Soil and Water Conservation. 25 (1), 203, 2011.
  • 17. ERNETO G.E., RODRIGUEZ L.C., WALEN V.K. Carbon sequestra-tion and farm income in West Africa: Identifying best management practices for smallholder agricultural systems in northern Ghana. Ecological Economics. 67 (3), 492, 2008.
  • 18. POPP M., NALLEY L., FORTIN C., SMITH A., BRYE K. Estimating net carbon emissions and agricultural response to potential carbon offset policies. Agronomy Journal. 103 (4), 1132, 2011.
  • 19. FARGIONE J., HILL J., TILMAN D., POLASKY S., Peter HAWTHORNE P. Land clearing and the biofuel carbon debt. Science. 319 (10), 1235, 2008.
  • 20. CARMELA B.M., AREVALO JAGTAR S. BHATTI. Land use change effects on ecosystem carbon balance: From agricultural to hybrid poplar plantation. Agriculture, Ecosystems and Environment. 141, 342, 2011.
  • 21. LAL R. Soil erosion and the global carbon budget. Environment International. 29 (4), 437, 2003.
  • 22. KINDLER R., SIEMENS J., KAISER K., WALMSLEY D.C. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Global Change Biology. 17 (2), 1167, 2011.
  • 23. XIONG C.H., YANG D.G., HUO J.W., ZHAO Y.N. The relationship between agricultural carbon emissions and agricultural economic growth and policy recommendations of a low-carbon agriculture economy in Hotan Prefecture, China. Polish Journal of Environmental Studies. 25 (5), 2187, 2016.
  • 24. TIAN Y., ZHANG J.B. Regional differentiation research on net carbon effect of agricultural production in China. Journal of Nature Resource, 28 (8), 1298, 2013.
  • 25. LU J.J., ZHOU Z.B., YAN B., DING X.Y., JIA H.T., WANG X.J. The analysis of cropland soil organic carbon sequestration rate and impacting factors in the process of oasisization of the irrigating area in Northern Tarim Basin. Arid Zone Research. 2016. (Accepted)
  • 26. WANG X.L. Carbon Dioxide, Climate Change, and Agriculture. China Meteorological Press, Beijing, 1996.
  • 27. HAN Z.Y., MENG Y.L., XU Ji., ZHOU Z G. Temporal and spatial difference in carbon footprint of regional farmland ecosystem - taking Jiangsu Province as a case. Journal of Agro-Environment Science. 31 (5), 1034, 2012.
  • 28. FANG J.Y., GUO Z.D., PIAO S.L., CHEN A. P. Estimation of terrestrial vegetation carbon sinks in China from 1981 to 2000. Science in China (Series D: Earth Sciences). 37 (6), 804, 2007.
  • 29. Zhang M.Z., Wang G.X. The forest biomass dynamics of Zhejiang Province. Acta Ecologica Sinica. 28 (11), 5665,2008 [In Chinese].
  • 30. ZHANG D.D., ZHANG S.M., HUANG W. Estimation of carbon sources and sinks of the agricultural system in Zhejiang Province. Chinese Journal of Agricultural Resources and Regional Planning. 33 (5), 12, 2012.
  • 31. LIU K., JIANG S.H., ZHU W.Y. Estimation of carbon sequestration value and analysis of space effect of forests in Guangdong Province. Chinese Journal of Agricultural Resources and Regional Planning. 36 (3), 120, 2015.
  • 32. SONG D.Y., LU Z.B. The Factor Decomposition and Periodic Fluctuations of Carbon Emission in China. China Population, Resources and Environment. 19 (3), 18, 2009.
  • 33. TIAN Y., ZHANG J.B., HE Y.Y. Research on Spatial-Temporal Characteristics and Driving Factor of Agricultural Carbon Emissions in China. Journal of Integrative Agriculture. 13 (6), 1393, 2014.
  • 34. ZHANG F., CAO J. Institutional Dilemma and Constructing Harmonious Mechanism of Interests on Agricultural Ecological Compensation Mechanism. Research of Agricultural Modernization. 31 (5), 538, 2010.
  • 35. WANG O., SONG H.Y. On the Compensation Mechanism after Reverting Farmland to Forests or Grasslands: A Discussion. Problem of Agricultural Economy. (6), 22, 79, 2005.
  • 36. ZHU G.Q., HAN H. Compensation Mechanism of Forest Ecological Benefit Based on Regional Carbon Trading. Journal of Northeast Forestry University. 38 (10), 109, 2010.
  • 37. KNOKE T., STEINBEIS O., BOSCH M., ROMAN-CUESTA R.M., BURKHARDT T. Cost-effective compensation to avoid carbon emissions from forest loss: An approach to consider price-quantity effects and risk-aversion. Ecological Economics. 70 (6), 1139, 2011.
  • 38. KRAGT M.E., GIBSON F.L., MASEYK F., WILSON K.A. Public willingness to pay for carbon farming and its cobenefits. Ecological Economics, 126, 125, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fee50255-3a21-45d4-bfda-994675fd5974
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.