PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 68 |

Tytuł artykułu

Involvement of phenolics, flavonoids and phenolic acids in high yield characteristics of rice (Oryza sativa L.)

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present study examined the correlation between phenolic acids and flavonoids with high and low yield traits of rice. It was observed that the difference of phenolic contents among the tested rice lines occurred only at the vegetative stage. The concentrations of phenolic acids were higher in the high yield cultivars than low yield varieties at the vegetative stage, but they either decreased dramatically or disappeared during the development stage. Caffeic acid was found only in high yield, whereas chlorogenic acid was detected only in low yield rice. Sinapic acid was the dominant phenolic acid in high yield cultivars at vegetative stage (3.7 mg/g), followed by ferulic acid (1.2 mg/g). These findings suggested that caffeic acid, ferulic acid, sinapic acid and chlorogenic acid may play a particular role in forming yield components in rice. The cultivar B3 contained high amount of sinapic acid may be used as a natural source for pharmaceutical use.

Wydawca

-

Rocznik

Tom

68

Opis fizyczny

p.19-26,ref.

Twórcy

autor
  • Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima, Japan
autor
  • Institute of Life Science, Thai Nguyen University, Thai Nguyen, Vietnam
autor
  • Khai Xuan International Co., Ltd, Hanoi, Vietnam

Bibliografia

  • [1] International Rice Research Institute (IRRI) (1996) IRRI towards 2020. Manila, The Philippines: IRRI.
  • [2] G.S. Khush, Strategies for increasing the yield potential of cereals: Case of rice as an example, Plant Breed. 132(5) (2013) 433-436.
  • [3] G.S. Khush, Harnessing science and technology for sustainable rice-based production systems, FAO Rice Conference (2004), Rome, Italy, 12-13 February.
  • [4] S. Tian, K. Nakamura, H. Kayahara, Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice, J. Agric. Food Chem. 52(15) (2004) 4808-4813.
  • [5] S. Butsat, N. Weerapreeyakul, S. Siriamornpun, Changes in phenolic acids and antioxidant activity in Thai rice husk at five growth stages during grain development, J. Agric. Food Chem. 57(11) (2009) 4566-4571.
  • [6] M. Walter, E. Marchesan, Phenolic compounds and antioxidant activity of rice, Braz. Arc. Biol. Tech. 54(2) (2011) 371-377.
  • [7] M. Olofsdotter, Rice-a step toward use of allelopathy, Agron. J. 93(1) (2001) 3-8.
  • [8] L. Bravo, Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance, Nutr. Rev. 56(11) (1998) 317-333.
  • [9] F.A. Tomás‐Barberán, J.C. Espin, Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables, J. Sci. Food Agr. 81(9) (2001) 853-876.
  • [10] F. Breseghello, A.S. Coelho, Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.), J. Agric. Food Chem. 61(35) (2013) 8277-8286.
  • [11] T.T. Tu Anh et al., Identification of phenolic variation and genetic diversity in rice (Oryza sativa L.) mutants, Agriculture. 8(2) (2018) 30.
  • [12] G.S. Khush, Breaking the yield frontier of rice, GeoJ. 35(3) (1995) 329-332.
  • [13] S. Peng et al., Progress in ideotype breeding to increase rice yield potential, Field Crops Res. 108(1) (2008) 32-38.
  • [14] T.D. Khanh, T.D. Xuan, I.M. Chung, Rice allelopathy and the possibility for weed management, Ann. Appl. Biol. 151(3) (2007) 325-339.
  • [15] T.D. Xuan et al., Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: an overview, Crop Prot. 24 (2005) 197-206.
  • [16] T.D. Xuan et al., Decomposition of allelopathic plants in soils, J. Agron. Crop Sci. 191(2) (2005) 162-171.
  • [17] S. Singh et al., Changes in phytochemicals, anti-nutrients and antioxidant activity in leafy vegetables by microwave boiling with normal and 5% NaCl solution, Food Chem. 176(1) (2015) 244-253.
  • [18] A. Djeridane et al., Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds, Food Chem. 97(4) (2006) 654-660.
  • [19] M. Ashikari et al., Cytokinin oxidase regulates rice grain production, Science. 309(5735) (2005) 741-745.
  • [20] S. Weidner et al., Changes in endogenous phenolic acids during development of Secale cereale caryopses and after dehydration treatment of unripe rye grains, Plant Physiol. Biochem. 38(7-8) (2000) 595-602.
  • [21] J. Su, R. Wu, Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis, Plant Sci. 166 (4) (2004) 941-948.
  • [22] K.J. Yun et al., Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-kappaB inactivation, J. Agric. Food Chem. 56(21) (2008) 10265-10272.
  • [23] C.B. Summers, G.W. Felton, Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera: Noctuidae): Potential mode of action for phenolic compounds in plant anti-herbivore chemistry, Insect Biochem. Molecular Biol. 24(9) (1994) 943-953.
  • [24] C.T. Ludlum, G.W. Felton, S.S. Duffey, Plant defenses: Chlorogenic acid and polyphenol oxidase enhance toxicity of Bacillus thuringiensis subsp. kurstaki to Heliothis zea, J. Chem. Ecol. 17(1) (1991) 217-237.
  • [25] C. Engels, A. Schieber, M.G. Gänzle, Sinapic acid derivatives in defatted Oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DAD-ESI-MS n and identification of compounds with antibacterial activity, European Food Res. Tech. 234(3) (2012) 535-542.
  • [26] A.M. Jalaludeen, L. Pari, Studies on the antioxidant and free radical-scavenging effect of sinapic acid: An in vivo and in vitro model, J. Pharm. Sci. Res. 3(9) (2011) 1447-1455.
  • [27] E.A. Hudson et al., Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells, Cancer Epidemiol. Biomarkers Prev. 9(11) (2000) 1163-1170.
  • [28] B.H. Yoon et al., Anxiolytic-like effects of sinapic acid in mice, Life Sci. 81(3) (2007) 234-240.
  • [29] L. Pari, A.M. Jalaludeen, Protective role of sinapic acid against arsenic: induced toxicity in rats, Chem. Biol. Interact. 194(1) (2011) 40-47.
  • [30] S.J. Roy, P.S.M. Prince, Protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats, Food Chem. Toxicol.50(11)(2012)3984-3989.
  • [31] N. Nićiforović, H. Abramovič, Sinapic acid and its derivatives: Natural sources and bioactivity, Compr. Rev. Food Sci. Food Safety. 13(1) (2014) 34–51.

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-fedefb13-e79f-4e61-86ba-b423b8e1745c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.