PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 49 |

Tytuł artykułu

Acute and sub lethal effect of potassium cyanide on the behaviour and ATPase enzyme activity in the freshwater fish, Clarias gariepinus (Catfish)

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Present research studies the acute sub lethal toxicity of potassium cyanide (KCN) in the fresh water, Clarias gariepinus and the effects on its behaviour and the Na+ - K+ ATPase enzyme activity. Acute toxicity of potassium cyanide (free cyanide) to the freshwater fish was studied using static bioassay method over a period of 96 h. Different concentrations of the toxicant (KCN) were used and LC50 value was found to be 361μg/L. Behavioural changes when exposed to lethal concentration of KCN showed increased feed intake, cannibalism, irregular swimming activity, rapid jerk movement, aggressiveness, loss of balance, opercula movement, surface behaviour, loss of equilibrium, change in body colour and convulsion. The effect of potassium on the Na+ - K+ ATPase of various physiological tissues which includes the gill, liver, muscles and intestinal over duration 0f 12 h- 35 days were also studied. Cyanide intoxication resulted in marked changes in ATPase, shown by significant decrease in the enzyme activities. The result shows that ATPase enzyme together could be employed as a sensitive and useful biomarkers for cyanide pollution while the behavioural changes could be an early signal of toxicity.

Wydawca

-

Rocznik

Tom

49

Opis fizyczny

p.71-78,fig.,ref.

Twórcy

autor
  • Toxicology Laboratory, Department of Biochemistry, University of Benin, Benin, Edo State, P.O.BOX 1154, Nigeria
  • Department of Food Science and Technology, Obafemi Awolowo University, PMB 13, Ile-Ife, Osun State, Nigeria

Bibliografia

  • [1] Aslihan, A.K. Na+, K+ - ATPase: A Review. 2002. Journal of Ankara Medical School, 24(2) 73-82.
  • [2] Barber, C. V. and Pratt, V. R. 1997. Strategies for combating cyanide fishing in Southeast Asia and beyond: Washington D .C: World Resources Institute and International Marine life Alliance.
  • [3] Begum, G. 2011. Organ-specific ATPase and phosphorylase enzyme activities in a food fish exposed to a carbamate insecticide and recovery response. Fish Physiology and Biochemistry, 37 (1): 61-69.
  • [4] Bowler R. G. 1944. The Determination of Thiocyanate in Blood Serum. Biochemical Journal, 38, 385- 388.
  • [5] Bradbury, S.P. and J.R. Coast, 1989. Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environmental Toxicology and Chemistry, 8: 373-380.
  • [6] Carfagna M. A., Ponsler, G. D. and Muhoberac, B. B. 1996. Inhibition of ATPase activity in rat synaptic plasma membranes by simultaneous exposure to metals. – Chem. Biol. Interact., 100: 53-65.
  • [7] Carpenter, PL. 1982. Immunology and Serology, 3rd ed., W. B. Saunders Co., Philadelphia, USA.
  • [8] Daya S., R. B. Walker and S. AnooPkumar, D. 2000. Cyanide- Induced Free Radical Production and Lipid Peroxidation in Rat Brain Homogenate is Reduced by Aspirin. Metabolic Brain Disease, 15 (3): 203-210.
  • [9] Deva Parkasa Raju, B. 2000. Fenvalerate induced changes in protein metabolism of fresh water fish, Tilapia mossambica. Ph. D. Thesis, S. K. University. Anantapur, A.P. India.
  • [10] Dixon, D.G. & G. Leduc. 1981. Chronic cyanide poisoning of rainbow trout and its effects on growth respiration and liver histopathology. Archives of Environmental Contamination and Toxicology 10: 117–131.
  • [11] Dube, P.N., Hosetti, B.B. 2011: Inhibition of ATPase activity in the freshwater fish Labeo rohita (Hamilton) exposed to sodium cyanide. Toxicological Mechanisms and Methods 21(8):591-595.
  • [12] Egekeze, J. O., and F. W. Oehme. 1980. Cyanides and their toxicity: a literature review. Vet. Q. 2:104-114.
  • [13] Enas, M. R. 2014. Toxicity and stability of sodium cyanide in fresh water fish Nile tilapia. Water Science 28, 42–50.
  • [14] Eisler, R. 1991. Cyanide hazards to fish, wildlife, and invertebrates: A synoptic review. United States Fish Wildlife Service and Biology Report 85(123):1-55.
  • [15] Ferrando, M.D., E. Sancho and E.A. Moliner. 1991. Comparative acute toxicities of selected pesticides to Anguilla anguilla. Environmental Science and Heath, 26(5-6): 491-498.
  • [16] Finney, DT.1971. Probit Analysis. 3rd ed. Cambridge University Press. London.
  • [17] Hariharakrishnan, J, Satpute, R.M, Bhattacharya, R. 2010. Cyanide induced changes in the levels of neurotransmitters in discrete brain regions of rats and their response to oral treatment with α-ketoglutarate. Indian Journal of Experimental Biology , 48:731-736.
  • [18] Isom, G.E., Borowitz .J.L, Mukhopadhyay, S . 2010. Sulfurtransferase enzymes involved in cyanide metabolism. In: Charlene AM, editor. Comprehensive Toxicology. Oxford: Elsevier. pp. 485–500
  • [19] Lowry, O.H., Lopez, J.A., 1946. The determination of inorganic phosphorus in the presence of labile phosphate ester. Journal of Biological Chemistry, 162, 421–428.
  • [20] Pablo, F., Buckney, R.T., Lim, R.P., 1996. Toxicity of cyanide and iron–cyanide complexes to Australian bass Macquaria novemaculeata and black bream Acanthapagrus butcheri. Australian Journal of Ecotoxicology, 2, 75–84.
  • [21] Palanichamy, S., S. Arunachalam and M.P. Balasubramanian, 1985. Toxic and sublethal effect of ammonium chloride on food utilization and growth in air breathing fish Channa striatus. Proc Warm water Aquaculture Hawaii, pp: 465-480.
  • [22] Prashanth MS. 2003.Cypermenthrin induced physiological, biochemical and histrophalogical changes in freshwater fish, Cirrhinus mrigala. Ph.D., thesis, Karnataka University, Dharwad. India
  • [23] Prashanth, M.S. and Neelagund, S. E. 2007. Free cyanide- induced Biochemical changes in Nitrogen metabolism of the Indian major carp. – Cirrhinus mrigala. Journal of Basic Clinical , Physiology and Pharmacology, 8 (4): 77-287.
  • [24] Prashanth, M.S., Sayeswara, H.A. and Mahesh, A.G. 2011. Effect of Sodium Cyanide On Behaviour And Respiratory Surveillance In Freshwater Fish, Labeo Rohita (Hamilton). Recent Research in Science and Technology, 3(2): 24-30.
  • [25] Praveen, N.D., Shwetha, A., Basaling, B.H. 2012. In vivo changes in the activity of (gill, liver and muscle) ATPases from Catla catla as a response of copper cyanide intoxication. European Journal of Experimental Biology, 2 (4):1320–1325.
  • [26] Samson, E.F., Quin, J.D., 1967. Na+/K+activated ATPase in rat development. J. Nerochem. 14, 421–427.
  • [27] Shwetha A., Praveen. N. Dube and B. B. Hosetti. 2012. Effect of Exposure to Sublethal Concentrations of Zinc Cyanide on Tissue ATPase Activity in the Fresh Water Fish, Cirrhinus mrigala (Ham). Acta Zoologica Bulgarica, 64 (2): 185-190.
  • [28] Shwetha, A., Hosetti, B.B. 2009. Acute effects of zinc cyanide on the behaviour and oxygen consumption of the Indian major carp, Cirrhinus mrigala. World Journal of Zoology 4(3):238-246.
  • [29] Sille, H, Winter, J. 1998. Degradation of cyanide in agro-industrial and industrial wastewater in acidification reactor or in a single-step methane reactor by bacteria enriched from soil and peels of cassava. Applied Microbiology and Biotechnology, 50: 384-389.
  • [31] Oboh, G., Akindahunsi, A.A. and Oshodi, A.A.2003. Dynamics of phytate-Zn balance of fungi fermented cassava products (flour and garri). Plants Foods for Human Nutrition, 58: 1-7.
  • [32] Okolie N. P and K. Audu. 2004. Correlation between cyanide- induced decreases in ocular Ca2+-ATPase and lenticular opacification. Journal of Biomedical Sciences, 3 (1): 37-41.
  • [33] Okolie, N.P. and Osagie, A.U. Liver and kidney lesions and associated enzyme changes induced in rabbits by chronic cyanide exposure. 1999. Food Chemistry and Toxicology, 37: 745– 750.
  • DOI References
  • [1] Aslihan, A.K. Na+, K+ - ATPase: A Review. 2002. Journal of Ankara Medical School, 24(2) 73-82. 10.1501/jms_0000000016
  • [3] Begum, G. 2011. Organ-specific ATPase and phosphorylase enzyme activities in a food fish exposed to a carbamate insecticide and recovery response. Fish Physiology and Biochemistry, 37 (1): 61-69. 10.1007/s10695-010-9417-4
  • [4] Bowler R. G. 1944. The Determination of Thiocyanate in Blood Serum. Biochemical Journal, 38, 385- 388. 10.1042/bj0380385
  • [5] Bradbury, S.P. and J.R. Coast, 1989. Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environmental Toxicology and Chemistry, 8: 373-380. 10.1002/etc.5620080503
  • [6] Carfagna M. A., Ponsler, G. D. and Muhoberac, B. B. 1996. Inhibition of ATPase activity in rat synaptic plasma membranes by simultaneous exposure to metals. - Chem. Biol. Interact., 100: 53-65. 10.1016/0009-2797(95)03685-7
  • [8] Daya S., R. B. Walker and S. AnooPkumar, D. 2000. Cyanide- Induced Free Radical Production and Lipid Peroxidation in Rat Brain Homogenate is Reduced by Aspirin. Metabolic Brain Disease, 15 (3): 203-210. 10.1007/bf02674529
  • [10] Dixon, D.G. & G. Leduc. 1981. Chronic cyanide poisoning of rainbow trout and its effects on growth respiration and liver histopathology. Archives of Environmental Contamination and Toxicology 10: 117-131. 10.1007/bf01057580
  • [11] Dube, P.N., Hosetti, B.B. 2011: Inhibition of ATPase activity in the freshwater fish Labeo rohita (Hamilton) exposed to sodium cyanide. Toxicological Mechanisms and Methods 21(8): 591-595. 10.3109/15376516.2011.585430
  • [12] Egekeze, J. O., and F. W. Oehme. 1980. Cyanides and their toxicity: a literature review. Vet. Q. 2: 104- 114. 10.1080/01652176.1980.9693766
  • [13] Enas, M. R. 2014. Toxicity and stability of sodium cyanide in fresh water fish Nile tilapia. Water Science 28, 42-50. 10.1016/j.wsj.2014.09.002
  • [14] Eisler, R. 1991. Cyanide hazards to fish, wildlife, and invertebrates: A synoptic review. United States Fish Wildlife Service and Biology Report 85(123): 1-55. 10.5962/bhl.title.11357
  • [15] Ferrando, M.D., E. Sancho and E.A. Moliner. 1991. Comparative acute toxicities of selected pesticides to Anguilla anguilla. Environmental Science and Heath, 26(5-6): 491-498. 10.1080/03601239109372751
  • [18] Isom, G.E., Borowitz .J. L, Mukhopadhyay, S . 2010. Sulfurtransferase enzymes involved in cyanide metabolism. In: Charlene AM, editor. Comprehensive Toxicology. Oxford: Elsevier. pp.485-500. 10.1016/b978-0-08-046884-6.00423-1
  • [23] Prashanth, M.S. and Neelagund, S. E. 2007. Free cyanide- induced Biochemical changes in Nitrogen metabolism of the Indian major carp. - Cirrhinus mrigala. Journal of Basic Clinical , Physiology and Pharmacology, 8 (4): 77-287. 10.1515/jbcpp.2007.18.4.277
  • [27] Shwetha A., Praveen. N. Dube and B. B. Hosetti. 2012. Effect of Exposure to Sublethal Concentrations of Zinc Cyanide on Tissue ATPase Activity in the Fresh Water Fish, Cirrhinus mrigala (Ham). Acta Zoologica Bulgarica, 64 (2): 185-190. 10.2298/abs1201257d
  • [29] Sille, H, Winter, J. 1998. Degradation of cyanide in agro-industrial and industrial wastewater in acidification reactor or in a single-step methane reactor by bacteria enriched from soil and peels of cassava. Applied Microbiology and Biotechnology, 50: 384- 389. 10.1007/s002530051309
  • [31] Oboh, G., Akindahunsi, A.A. and Oshodi, A.A. 2003. Dynamics of phytate-Zn balance of fungi fermented cassava products (flour and garri). Plants Foods for Human Nutrition, 58: 1-7. 10.1023/b:qual.0000040356.32625.5e
  • [32] Okolie N. P and K. Audu. 2004. Correlation between cyanide- induced decreases in ocular Ca2+-ATPase and lenticular opacification. Journal of Biomedical Sciences, 3 (1): 37-41. 10.4314/jmbr.v3i1.10654
  • [33] Okolie, N.P. and Osagie, A.U. Liver and kidney lesions and associated enzyme changes induced in rabbits by chronic cyanide exposure. 1999. Food Chemistry and Toxicology, 37: 745- 750. 10.1016/s0278-6915(99)00059-9

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-fedebe32-3978-4a0b-8106-875a8a138fd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.