PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 13 | 3 |

Tytuł artykułu

Selected insecticides and acaricide as modifiers of the metabolic rate in the beetle Anoplotrupes stercorosus under various thermal conditions: the effect of pirimicarb, diazinon and fenazaquin

Warianty tytułu

PL
Wybrane insektycydy jako modyfikatory metabolizmu u Anoplotrupes stercorosus w odmiennych warunkach termicznych otoczenia: pirymikarb, diazynon i fenazachina

Języki publikacji

EN

Abstrakty

EN
In 2007 and 2008 studies aimed to determine the effect of preparation belonging to carbamate compounds (Pirimor 500 WG), organophosphorus compounds (Diazol 500 EW), and quinazolin compounds (Magus 200 SC), on the oxygen consumption rate by adult beetles Anoplotrupes stercorosus were performed. Experiments were carried out under diverse ambient temperatures (14, 19, 24 i 29°C) using two ways of intoxication – contact intoxication or intoxication by ingestion of the biocide. In control insects the ambient temperature affected the oxygen demand only to a small extent. Usually, insecticide preparations which were used, markedly potentiated the oxygen consumption. In those experimental groups significant increases of oxygen consumption as the effect of ambient temperature elevation were noted. The mode of the intoxication influenced oxygen consumption only very slightly. The highest values of oxygen consumption were noted in animals treated by contact intoxication.
PL
W 2007 i 2008 roku przeprowadzono badania wpływu preparatów owadobójczych z grupy karbaminianów (Pirimor 500 WG), insektycydów fosfoorganicznych (Diazol 500 EW) i pochodnych chinazolin (Magus 200 SC) na tempo konsumpcji tlenu dorosłych osobników Anoplotrupes stercorosus. Badania przeprowadzono w odmiennych warunkach termicznych otoczenia (14, 19, 24 i 29°C), stosując dwa sposoby intoksykacji – kontaktową oraz poprzez traktowanie biocydami pokarmu. Uzyskane wyniki wskazują, że temperatura otoczenia tylko w niewielkim stopniu wpływała na zapotrzebowanie tlenowe owadów z grupy kontrolnej. Zastosowane preparaty owadobójcze zwykle nasilały konsumpcję tlenu. W grupie zwierząt intoksykowanych ulegała ona również istotnemu zwiększeniu wraz ze wzrostem temperatury otoczenia. Większe wartości tempa metabolizmu odnotowano u zwierząt traktowanych kontaktowo w stosunku do zwierząt traktowanych pokarmowo.

Wydawca

-

Rocznik

Tom

13

Numer

3

Opis fizyczny

p.19-29,ref.

Twórcy

  • Department of Ecotoxicology, Institute of Applied Biotechnology and Basic Science, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
autor
  • Department of Ecotoxicology, Institute of Applied Biotechnology and Basic Science, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
autor
  • Nicolaus Copernicus University, Torun, Poland
  • Department of Ecotoxicology, Institute of Applied Biotechnology and Basic Science, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland

Bibliografia

  • Andresen E., 2003. Effect of forest fragmentation on dung beetle communities and functional consequences for plant regeneration. Ecography 26, 1, 87-97.
  • Bang H.S., Lee J.H., Kwon O.S., Na Y.E., Jang Y.S., Kim W.H., 2005. Effects of paracoprid dung beetles (Coleoptera: Scarabaeidae) on the growth of pasture herbage and on the underlying soil. Appl. Soil Ecol. 29, 165-171.
  • Beleboni R.O., Pizzo A.B., Fontana A.C.K., Carolino R.O.G., Coutinho-Netto J., Santos W.F., 2004. Spider and wasp neurotoxins: pharmacological and biochemical aspects. Eur. J. Pharmacol. 493, 1-17.
  • Bradley T.J., Brethorst L., Robinson S., Hetz S., 2003. Changes in the rate of CO2 release following feeding in the insect Rhodnius prolixus. Physiol. Biochem. Zool. 76, 302-309.
  • Brown T.M., Brogdon W.G., 1987. Improved detection of insecticide resistance through conventional and molecular techniques. Ann. Rev. Entomol. 32, 145-162.
  • Calabi P., Porter S.D., 1989. Worker longevity in the fire ant Solenopsis invicta: ergonomic considerations of correlations between temperature, size and metabolic rates. J. Insect Physiol. 35, 643-649.
  • Crnokrak P., Roff D.A., 2002. Trade-offs to flight capability in Gryllus firmus: the influence of whole-organism respiration rate on fitness. J. Evolution. Biol. 15, 3, 388-398.
  • Devonshire A.L., Field L.M., 1991. Gene amplification and insecticide resistance. Ann. Rev. Entomol. 36, 1-2.
  • Estrada A., Anzures A.D., Coates-Estrada R., 1999. Tropical rain forest fragmentation, howler monkeys (Alouatta palliata), and dung beetles at Los Tuxtlas, Mexico. Am. J. Primatol. 48, 4, 253-262.
  • Fukuto T.R., 1990. Mechanism of action of organophosphorus and carbamate insecticides. Envir. Health Perspect. 87, 245-254.
  • Gouveia S. M., Simpson S.J., Raubenheimer D., Zanotto F.P., 2000. Patterns of respiration in Locusta migratoria nymphs when feeding. Physiol. Entomol. 25, 1, 88-93.
  • Hebling M.J.A., Bueno O.C., Maroti P.S., Pagnocca F.C., Silva da O.A., 2000. Effects of leaves of Ipomoea batatas (Convolvulaceae) on nest development and on respiratory metabolism of leaf-cutting ants Atta sexdens L. (Hym. Formicidae). J. Appl. Entomol. 124, 5-6, 249-252.
  • Heinrich B.J., 1984. Strategies of thermoregulation and foraging in two vespid wasps, Dolichovespula maculata and Vespula vulgaris. Comp. Physiol. B, 154, 2, 175-180.
  • Horgan F.G., 2005. Aggregated distribution of resources creates competition refuges for rainforest dung beetles. Ecography 28, 5, 603-618.
  • Jaffe K., Hebling-Baraldo M.J., 1990. Respirometry and the evolution of order: negentrophy criteria applied to the evolution of ants. In: Study of social insect. Eds. G.K. Veeresh, B. Mallik, C.A. Viraktamath. Oxford and IPH Publ. New Delhi.
  • Jaffe K., Hebling-Beraldo M.J., 1993. Oxygen consumption and the evolution of order: negentropy criteria applied to the evolution of ants. Experientia 49, 6, 587-592.
  • Kölsch G., Jakobi K., Wegener G., Braune H.J., 2002. Energy metabolism and metabolic rate of the alder leaf beetle Agelastica alni (L.) (Coleoptera, Chrysomelidae) under aerobic and anaerobic conditions: a microcalorimetric study. J. Insect Physiol. 48, 143-151.
  • Kovac H., Stabentheiner A., 1999. Effect of food quality on the body temperature of wasps (Paravespula vulgaris). J. Insect. Physiol. 45, 183-190.
  • Mbata G.N., Hetz S.K., Reichmuth C., Adler C., 2000. Tolerance of pupae of Callosobruchus subinnotatus Pic (Coleoptera: Bruchidae) to modified atmospheres: a factor of pupal metabolism. J. Insect Physiol. 46, 145-151.
  • Needham G.R., Teel P.D., 1991. Off-host physiological ecology of ixodid ticks. Ann. Rev. Entomol. 36, 659-681.
  • Neven L.G., 2000. Insect physiological responses to heat. Postharv. Biol. Tec. 21, 103-111.
  • Piechowicz B., Stawarczyk K., Stawarczyk M., 2012. Insecticide and food consumption of spanish slug (Arion lusitanicus Mabille 1868). Chem. Didact. Ecol. Metrol. 17, 1-2, 113-120.
  • Reinhold K., 1999. Energetically costly behaviour and the evolution of resting metabolic rate in insects. Funct. Ecol. 13, 2, 217-224.
  • Roces F., Lighton J.R.B., 1995. Larger bites of leaf-cutting ants. Nature 373, 392-393.
  • Ross R.E., 2000. Age-specific decrease in aerobic efficiency associated with increase in oxygen free radical production in Drosophila melanogaster. J. Insect Physiol. 46, 1477-1480.
  • Salvucci M.E., Crafts-Brandner S.J., 2000. Effects of temperature and dietary sucrose concentration on respiration in the silverleaf whitefly, Bemisia argentifolii. J. Insect Physiol. 46, 1461-1467.
  • Shelton T.G., Appel A.G., 2001. Carbon dioxide release in Coptotermes formosanus Shiraki and Reticulitermes flavipes (Kollar): effects of caste, mass, and movement. J. Insect Physiol. 47, 213-224.
  • Slade E.M., Mann D.J., Villanueva J.F., Lewis O.T., 2007. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J. Anim. Ecol. 76, 6, 1094-1104.
  • Suarez R.K., 2000. Energy metabolism during insect flight: Biochemical design and physiological performance. Physiol. Biochem. Zool. 73, 6, 765-771.
  • Tęgowska E., Piechowicz B., Grajpel B., 2004. Influence of ambient temperature on survival rate, thermoregulation and metabolic responses of beetle Geotrupes stercorarius exposed to pyrethroid and inhibitor of Cytochrome P450. Pestycydy 1-2, 71-81.
  • Vogt J.T., Appel A.G., 1999. Standard metabolic rate of the fire ant, Solenopsis invicta (Buren): Effects of temperature, mass, and caste. J. Insect Physiol. 45, 655-666.
  • Vogt J.T., Appel A.G., 2000. Flight energetics and dispersal capability of the fire ant, Solenopsis invicta Buren. J. Insect Physiol. 46, 697-707.
  • Wood E., Latli B., Casida J.E., 1996. Fenazaquin acaricide specific binding sites in NADH: ubiquinone oxidoreductase and apparently the ATP synthase stalk. Pest. Biochem. Physiol. 54, 135-145.
  • Zanotto F.P., Gouveia S.M., Raubenheimer D., Simpson S.J., Calder P.C., 1997. Nutritional homeostasis in locusts: is there a mechanism for increased energy expenditure during carbohydrate overfeeding? J. Exp. Biol. 200, 2437-2448.
  • Zhou S., Criddle R.S., Mitcham E.J., 2001. Metabolic response of Platynota stultana pupae during and after extended exposure to elevated CO2 and reduced O2 atmospheres. J. Insect Physiol. 47, 401-409.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fe7be4eb-b965-42fd-add7-57c022f00bc8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.