PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 63 | 2 |

Tytuł artykułu

Modular genetic architecture of the toxigenic plasmid pIS56-63 harboring cry1Ab21 in Bacillus thuringiensis subsp. thuringiensis strain IS5056

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bacillus thuringiensis subsp. thuringiensis IS5056, a strain highly toxic to Trichoplusia ni larvae, produces the newly described Cry1Ab21 δ-endotoxin encoded by a gene located in the 63.8 kb pIS56-63 plasmid. In this report we present the structure and functional similarity of this plasmid to other B. thuringiensis large toxigenic plasmids with particular interest focused on its modular architecture. The 61 open reading frames (ORFs) of the plasmid made four functional modules: (i) M1-mic, the mobile insertion cassette harboring cry1Ab21;(ii) M2-tra, the putative conjugative element; (iii) M3-reg, regulation sequence; and (iv) M4-rep, the ori44 replicon. These modules display similarity to corresponding sequences in distinct B. thuringiensis plasmids, but, in general, not to plasmid of other Bacillus cereus sensu lato. The nucleotide sequence and organization of genes in pIS56-63 were highly similar (80–100%) to those in pHT73 of B. thuringiensis HT73, and in p03 of B. thuringiensis HD771, particularly within the M3-reg and M4-rep modules, and slightly less in M2-tra, the latter of which is composed of two segments exhibiting homology to sequences in pBMB28, pAH187_45, pCT83, and pIS56-85 or to pCT72, pBMB67, p04, and pIS56-68. The tetrapartite structure of the toxigenic pIS56-63 plasmid strongly suggests that its hybrid nature is a result of recombination of various genetic elements originating from different extrachromosomal and chromosomal sources in B. thuringiensis. The presence of cry1Ab21 in the mobile cassette suggests that its occurrence on pIS56-63 resulted from recombination and transposition events during the evolution of the plasmid.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

63

Numer

2

Opis fizyczny

p.147-156,fig.,ref.

Twórcy

autor
  • Department of Microbiology, University of Bialystok, 20B Swierkowa Street, 15-950 Bialystok, Poland
autor
  • Department of Microbiology, Medical University of Bialystok, Bialystok, Poland
autor
  • Department of Microbiology, University of Bialystok, 20B Swierkowa Street, 15-950 Bialystok, Poland

Bibliografia

  • Berry C., S. O’Neil, E. Ben-Dov, A.F. Jones, L. Murphy, M.A. Quail, M.T. Holden, D. Harris, A. Zaritsky and J. Parkhill. 2002. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 68: 5082–5095.
  • Bourguet F.A., B.E. Souza, A.K. Hinz, M.A. Coleman andP.J. Jackson. 2012. Characterization of a novel lytic protein encoded by the Bacillus cereus E33L gene ampD as a Bacillus anthracis antimicrobial protein. Appl. Environ. Microbiol. 78: 3025–3027.
  • Carver T., N. Thomson, A. Bleasby, M. Berriman and J. Parkhill. 2009. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25: 119–120.
  • Cervin M.A., R.J. Lewis, J.A. Brannigan and G.B. Spiegelman. 1998. The Bacillus subtilis regulator SinR inhibits spoIIG promoter transcription in vitro without displacing RNA polymerase. Nucleic Acids Res. 16: 3806–3812.
  • Colledge V.L., M.J. Fogg, V.M. Levdikov, A Leech, E.J. Dodson and A.J. Wilkinson. 2011. Structure and organisation of SinR, the master regulator of biofilm formation in Bacillus subtilis. J. Mol. Biol. 411: 597–613.
  • Delcher A.L., K.A. Bratke, E.C. Powers and S.L. Salzberg. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23: 673–679.
  • Gayathri P., T. Fujii, J. Møller-Jensen, F. van den Ent, K. Namba and J. Löwe. 2012. A bipolar spindle of antiparallel ParM filaments drives bacterial plasmid segregation. Science 338: 1334–1337.
  • Grohmann E., G. Muth and M. Espinosa. 2003. Conjugative plasmid transfer in Gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67: 277–301.
  • Helgason E., O.A. Okstad, D.A. Caugant, H.A. Johansen, A. Fouet, M. Mock, I. Hegna and A.-B. Kolstø. 2000. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66: 2627–2630.
  • Hoton F., L. Andrup, I. Swiecicka and J. Mahillon. 2005. The cereulide genetic determinants of emetic Bacillus cereus are plasmid-borne. Microbiology 151: 2121–2124.
  • Johnson J.W., J.F. Fisher and S. Mobashery. 2013. Bacterial cell-wall recycling. Ann. N. Y. Acad. Sci. 1277: 54–75.
  • Krogh A., B. Larsson, G. von Heijne and E.L. Sonnhammer. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305: 567–580.
  • Leonard C., Y. Chen and J. Mahillon. 1997. Diversity and differential distribution of IS231, IS232 and IS240 among Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides. Microbiology 143: 2537–2547.
  • Malvar T., C. Gawron-Burke and J.A. Baum. 1994. Overexpression of Bacillus thuringiensis HknA, a histidine protein kinase homology, bypasses early Spo mutations that result in CryIIIA overproduction. J. Bacteriol. 176: 4742–4729.
  • Marchler-Bauer A., C. Zheng, F. Chitsaz, M.K. Derbyshire,L.Y. Geer, R.C. Geer, N.R. Gonzales, M. Gwadz, D.I. Hurwitz, C.J. Lanczycki and others. 2013. CDD: conserved domains and protein three-dimensional structure. Nucleic. Acids. Res. 41: D348–D352.
  • Martínez-Núñez C., P. Altamirano-Silva, F. Alvarado-Guillén, E. Moreno, C. Guzmán-Verri and E. Chaves-Olarte. 2010. The Two-Component System BvrR/BvrS Regulates the Expression of the Type IV Secretion System VirB in Brucella abortus. J. Bacteriol. 192: 5603–5608.
  • Mock M. and A. Fouet. 2001. Anthrax. Ann. Rev. Microbiol. 55: 647–671.
  • Murawska E., K. Fiedoruk, D.K. Bideshi and I. Swiecicka. 2013. Complete genome sequence of Bacillus thuringiensis subsp. thuringiensis IS5056, an isolate highly toxic to Trichoplusia ni. Genome Announcem. 2: e0010813.
  • Pflughoeft K.J., P. Sumby and T.M. Koehler. 2011. Bacillus anthracis sin locus and regulation of secreted proteases. J. Bacteriol. 193: 631–639.
  • Rutherford K., J. Parkhill, J. Crook, T. Horsnell, P. Rice, M.A. Rajandream and B. Barrell. 2000. Artemis: sequence visualization and annotation. Bioinformatics 16: 944–945.
  • Sanahuja G., R. Banakar, R.M. Twyman, T. Capell and P. Christou P. 2011. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol. J. 9: 283–300.
  • Souza R.C., G.D. Quispe Saji, M.O. Costa, D.S. Netto, N.C. Lima, C.C. Klein, A.T. Vasconcelos and M.F Nicolas. 2012. AtlasT4SS: A curated database for type IV secretion systems. BMC Microbiol. 12: 172.
  • Stenfors Arnes L.P., A. Fagerlund and P.E. Granum. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579–606.
  • Sullivan M.J., N.K. Petty and S.A. Beatson. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27: 1009–1010.
  • Swiecicka I., D.K. Bideshi and B.A. Federici. 2008. Novel isolate of Bacillus thuringiensis subsp. thuringiensis that produces a quasi-cuboidal crystal of Cry1Ab21 toxic to larvae of Trichoplusia ni. Appl. Environ. Microbiol. 74: 923–930.
  • Swiecicka I. 2008. Natural occurrence of Bacillus thuringiensis and Bacillus cereus in eukaryotic organisms: a case for symbiosis. Biocontrol Sci. Technol. 18: 221–239.
  • Toussaint A. and C. Merlin. 2002. Mobile elements as a combination of functional modules. Plasmid 47: 26–35.
  • Treangen T.J. and E.P.C Rocha. 2011. Horizontal transfer, not duplication, drives the expansion of protein families in Prokaryotes. PLoS Genet. 7: e1001284.
  • Van der Auwera G.A., L. Andrup and J. Mahillon. 2005. Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and the Bacillus thuringiensis plasmid pBT9727. BMC Genomics 6: 103.
  • Yuan Y., D. Zheng, X. Hu, Q. Cai and Z. Yuan. 2010. Conjugative transfer of insecticidal plasmid pHT73 from Bacillus thuringiensis to B. anthracis and compatibility of this plasmid with pXO1 and pXO2. Appl. Environ. Microbiol. 76: 468–473.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fe6aaac8-4818-4c76-a9fc-b39ca87f565d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.