PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 19 | 4 |

Tytuł artykułu

Adrenergic control of pinealocyte chondriome - an in vitro study

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Norepinephrine released from sympathetic innervation plays the main role in the regulation of melatonin secretion in mammalian pinealocytes. The present study was conducted for the following reasons: 1) to establish whether the pinealocyte chondriome is controlled by norepinephrine, 2) to determine the effect of adrenergic stimulation on mitochondria, and 3) to characterize adrenoceptors involved in the regulation of the chondriome. The static organ culture of the pineal gland was used. The explants were incubated for 5 consecutive days in control medium and between 20:00 and 08:00 in medium with the presence of 10 μM norepinephrine – adrenergic agonist; isoproterenol – beta-adrenoceptor agonist; cirazoline, methoxamine, M-6364 – alfa1 – adrenoceptors agonists or PMA – activator of PKC. The explants were then subjected to ultrastructural examination and morphometric analysis. The incubation of explants in the presence of norepinephrine or isoproterenol caused a decrease in the relative volume and the numerical density of mitochondria and induced an increase in the percentage of free mitochondria in pinealocytes. Significant changes in these parameters were not observed after treatment with methoxamine, cirazoline, M-6463 and PMA. The results obtained show that the chondriome of pig pinealocytes is controlled by norepinephrine acting via beta-adrenoceptors. Adrenergic stimulation, repeated for five consecutive days of organ culture, causes a decrease in the number of mitochondria and a shift in the distribution of mitochondria from the form of networks and filaments into the form of single particles. This indicates the intensive remodeling of the mitochondria network, which is closely linked to the metabolic status of the cell.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

4

Opis fizyczny

p.819-829,fig.,ref.

Twórcy

  • Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-714 Olsztyn, Poland
autor
  • Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-714 Olsztyn, Poland
  • Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-714 Olsztyn, Poland
autor
  • Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-714 Olsztyn, Poland

Bibliografia

  • Arnold B, Cassady SJ, VanLaar VS, Berman SB (2011) Integrating multiple aspects of mitochondrial dynamics in neurons: age related differences and dynamic changes in a chronic rotenone model. Neurobiol Dis 41: 189-200.
  • Bereiter-Hahn J, Voth M, Mai S, Jendrach M (2008) Structural implications of mitochondrial dynamics. Biotechnol J 3: 765-780.
  • Bernard G, Karbowski M (2009) Mitochondrial fusion and division: Regulation and role in cell viability. Semin Cell Dev Biol 20: 365-374.
  • Branco AF, Sampaio SF, Wieckowski MR, Sardao VA, Oliveira PJ (2013) Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardomyoblasts: differential activation of stress and survival pathways. Int J Biocem Cell Biol 45: 2379-2391.
  • Chada SR, Hollenbeck PJ (2003) Mitochondrial movement and positioning in axons: the role of growth factor signaling. J Exp Biol 206: 1985-1992.
  • Chan DC (2006) Mitochondria: dynamic organelles in disease,aging and development. Cell 125: 1241-1252.
  • Chiang MC, Lin H, Cheng YC, Yen CH, Huang RN, Link KH (2012) β-adrenoceptor pathway enhances mitochondrial function in human neural stem cells via rotary cell culture system. J Neurosci Methods 15: 130-136.
  • Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV (2014) Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int 2014: 238463.
  • Collins TJ, Berridge MJ, Lipp P, Bootman MD (2002) Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J 21: 1616-1627.
  • Dedov VN, Armati PJ, Roufogalis BD (2000) Three-dimensional organization of mitochondrial clusters in regenerating dorsal root ganglion (DRG) neurons from neonatal rats: evidence for mobile mitochondrial pools. J Peripher Nerv Syst 5: 3-10.
  • Dhillon RS, Schulte PM (2011) Intraspecific variation in the thermal plasticity of mitochondria in killifish. J Exp Biol 214: 3639-3648.
  • Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med 25: 365-451.
  • Elgass K, Pakay J, Ryan MT, Palmer CS (2012) Recent advances into the understanding of mitochondrial fission. Biochim Biophys Acta 1833: 150-161.
  • Escobar-Henriques M, Anton F (2013) Mechanistic perspective of mitochondrial fusion: tubulation vs. fragmentation. Biochem Biophys Acta 1833: 162-175.
  • Gupta BB, Spessert R, Vollrath L (2005) Molecular components and mechanism of adrenergic signal transduction in mammalian pineal gland: regulation of melatonin synthesis. Indian J Exp Biol 43: 115-149.
  • Ho AK, Chik CL (1990) Post receptor mechanism in dual receptors regulation of second messengers in rat pineal gland. Prog Clin Biol Res 342: 139-145.
  • Hori S, Kuroda Y, Saito K, Ohotani S (1976) Subcellular localization of tryptophan-5-mono-oxygenase in bovine pineal glands and raphe nuclei. J Neurochem. 27: 911-914.
  • Karasek M, Zielinska A, Marek K, Swietoslawski J (2002) Effect of superior cervical ganglionectomy on the ultrastructure of pinealocytes in the Djungarian hamster (Phodopus sungorus): quantitative study. Neuro Endocrinol Lett 23: 443-446.
  • Kus I, Sarsilmaz M, Ozen OA, Turkoglu AO, Pekmez H, Songur A, Kelestimur H (2004) Light and electron microscopic examination of pineal gland in rats exposed to constant light and constant darkness. Neuro Endocrinol Lett 25: 102-108.
  • Kuzmicic J, Del Campo A, López-Crisosto C, Morales PE, Pennanen C, Bravo-Sagua R, Hechenleitner J, Zepeda R, Castro PF, Verdejo HE, Parra V, Chiong M, Lavandero S (2011) Mitochondrial dynamics: a potential new therapeutic target for heart failure. Rev Esp Cardiol 64: 916-923.
  • Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel R, Helge JW, Dela F, Hey-Mogensen M (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590: 3349-3360.
  • Lewczuk B (2002) Mechanism of adrenergic regulation of melatonin secretion in the pig pineal gland – in vitro study. 1st ed., University of Warmia and Mazury, Olsztyn.
  • Lewczuk B, Nowicki M, Prusik M, Przybylska-Gornowicz B (2004) Diurnal rhythms of pinealocyte ultrastructure, pineal serotonin content and plasma melatonin level in the domestic pig. Folia Histochem Cytobiol 42: 155-163.
  • Lewczuk B, Przybylska-Gornowicz B (1997) Effects of sympathicolytic and sympaticomimetic drugs on pineal ultrastructure in the domestic pig. J Pineal Res 23: 198-208.
  • Lewczuk B, Przybylska-Gornowicz B (2000a) The effect of continuous darkness and illumination on the function and the morphology of the pineal gland in the domestic pig. Neuro Endocrinol Lett 21: 293-299.
  • Lewczuk B, Przybylska-Gornowicz B (2000b) The effect of exogenous melatonin on the pinealocyte ultrastructure in the domestic pig (Sus domesticus) depends on the time of its administration. Pol J Vet Sci 3: 29-38.
  • Lewczuk B, Przybylska B, Wyrzykowski Z (1994) Distribution of calcified concretions and calcium ions in the pig pineal gland. Folia Histochem Cytobiol 32: 243-249.
  • Lewczuk B, Ziółkowska N, Prusik M, Przybylska-Gornowicz B (2014) Adrenergic activation of melatonin secretion in ovine pineal explants in short-term superfusion culture occurs via protein synthesis independent and dependent phenomena. Biomed Res Int 2014: 715708.
  • Madhu N, Manna CK (2010) Pineal-adrenal interactions in domestic male pigeon exposed to variable circadian light regimes and exogenous melatonin. Endocr Regul 44: 121-127.
  • Mironov SL (2006) Spontaneous and evoked neuronal activites regulate movements of single neuronal mitochondria. Synapse 59: 403-411.
  • Mironov SL (2007) ADP regulates movements of mitochondria in neurons. Biophys J 92: 2944-2952.
  • Muller M, Mironov SL, Ivannikov MV, Schmidt J, Richter DW (2005) Mitochondrial organization and motility probed by two-photon microscopy in cultured mouse brainstem neurons. Exp Cell Res 303: 114-127.
  • Nowicki M, Lewczuk B, Przybylska-Gornowicz B (2002) Influence of 4-day long treatment with vasoactive intestinal peptide on ultrastructure and function of the rat pinealocytes in organ culture. Folia Histochem Cytobiol 40: 9-16.
  • Otera H, Ishihara N, Mihara K (2013) New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta 1833: 1256-1268.
  • Otera H, Mihara K (2011) Molecular mechanisms and physiologic functions of mitochondrial dynamics. J Biochem 149: 241-251.
  • Oxenkrug GF, McIntyre IM, Requintina PJ, Duffy JD (1991) The response of the pineal melatonin biosynthesis to the selective MAO-A inhibitor, clorgyline, in young and middle-aged rats. Prog Neuropsychopharmacol Biol Psychiatry 15: 895-902.
  • Palmer CS, Osellame LD, Stojanoski D, Ryan MT (2011) The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell Signal 23: 1534-1545.
  • Pennanen C, Parra V, López-Crisosto C, Morales PE, Del Campo A, Gutierrez T, Rivera-Mejtas P, Kuzmicic J, Chiong M, Zorzano A, Rothermel BA, Lavandero S (2014) Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway. J Cell Sci 127: 2659-2671.
  • Perkins GA, Ellisman MH (2007) Mitochondrial architecture and heterogeneity. In: Gibson GE, Dienel GA (eds) Handbook of neurochemistry and molecular neurobiology. Integration of molecular and cellular processes. Springer-Verlag, Berlin, pp 261-295.
  • Peterson YK, Cameron RB, Wills LP, Trager RE, Lindsey CC, Beeson CC, Schnellmann RG (2013) β2-adrenoceptor agonists in the regulation of mitochondrial biogenesis. Bioorg Med Chem Lett 23: 5376-5381.
  • Piquereau J, Caffin F, Novotova M, Lemaire C, Veksler V, Garnier A, Ventura-Clapier R, Joubert F (2013) Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front Physiol 4: 102.
  • Przybylska-Gornowicz B, Lewczuk B, Ciesielska-Myszka L, Wyrzykowski Z (1994) Cytochemical localization of monoamine oxidase in the pig pineal gland. Folia Histochem Cytobiol 32: 161-166.
  • Przybylska-Gornowicz B, Lewczuk B, Prusik M, Kalicki M, Ziółkowska N (2012) Morphological studies of the pineal gland in the common gull (Larus canus) reveal uncommon features of pinealocytes. Anat Rec (Hoboken) 295: 673-685.
  • Przybylska B, Lewczuk B, Wyrzykowski Z, Karasek M (1994) Effects of p-chlorophenylalanine, amiflamine and melatonin treatment on the ultrastructure of pinealocytes in Sus scrofa. Cytobios 77: 233-246.
  • Reddy PH, Reddy TP, Manczak M, Calkins MJ, Shirendeb U, Mao P (2011) Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res Rev 67: 103-118.
  • Redondo E, Regodon S, Franco A, Masot J, Ghzquez A, Cardinali DP (2003) Day-night changes in plasma melatonin levels, synaptophysin expression and ultrastructural properties of pinealocytes in developing female sheep under long and short photoperiods. Histol Histopathol 18: 333-342.
  • Robinson MM, Richards JC, Hickey MS, Moore DR, Philips SM, Bell C, Miller BF (2010) Acute (beta) – adrenergic stimulation does not alter mitochondrial protein synthesis or markers of mitochondrial biogenesis in adult men. Am J Physiol Regul Integr Comp Physiol 298: R25-33.
  • Rube DA, van der Bliek AM (2004) Mitochondrial morphology is dynamic and varied. Mol Cell Biochem 256-257: 331-339.
  • Sasaki S (2010) Determination of altered mitochondria ultrastructure by electron microscopy. Methods Mol Biol 648: 279-290.
  • Simonneaux V, Ribelayga C (2003) Generation of the melatonin endocrine message in mammals: a review of the complex regulations of melatonin synthesis by norepinephrine, peptides and other pineal transmitters. Pharmacol Rev 55: 325-395.
  • Skulachev VP (2001) Mitochondrial filaments and clusters as intercellular power-transmitting cables. Trends Biochem Sci 26: 23-29.
  • Sundal S, Sharma S (2007) Ultrastructural findings for the mitochondrial subpopulation of mice skeletal muscle after adrenergic stimulation by clenbuterol. J Physiol Sci 57: 7-14.
  • Tomanek RJ (1989) Sympathetic nerves modify mitochondrial and capillary growth in normotensive and hypertensive rats. J Mol Cell Cardiol 21: 755-764.
  • Van Laar VS, Berman SB (2013) The interplay of neuronal mitochondrial dynamics and bioenergetics: implications for Parkinson’s disease. Neurobiol Dis 51: 43-55.
  • Weibel ER (1979) Stereological methods. Vol. 1. Academic Press, London.
  • Wills LP, Trager RE, Beeson GC, Lindsey CC, Peterson YK, Beeson CC, Schnellmann R G (2012) The β2-adrenoceptor agonist formoterol stimulates mitochondrial biogenesis. J Pharmacol Exp Ther 342: 106-118.
  • Wyrzykowski Z, Przybylska B, Wyrzykowska K (1990) The effect of progesterone and progesterone + estradiol on the morphology of the pineal gland in immature female pigs. Z Mikrosk Anat Forsch 104: 265-272.
  • Wyrzykowski Z, Przybylska B, Wyrzykowska K, Kaleczyc J (1992) Influence of bilateral ovariectomy on the morphology and ultrastructure of the pineal gland in the pig (Sus scrofa) – quantitative and qualitative studies. Folia Morphol 51: 93-108.
  • Zielińska A, Swietosławski J, Reiter RJ, Karasek M (2006) The effect of melatonin, N-acetyloserotonin and 6-hydroksymelatonin on the ultrastructure of the pinealocytes of the Syrian hamster (Mesocricetus auratus). Endokrynol Pol 57: 2-6.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fe66b893-85df-4171-9290-26616f54c090
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.