PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 62 | 1 |

Tytuł artykułu

Relation between body-size and thermoregulation behavior: postprandial thermophily in spiny-tailed agama Uromastyx acanthinura Bell

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Ectothermal vertebrates regulate their body temperature within definite limits to maintain physiological processes at their optimal levels. Among others, food processing and absorption are strongly temperature-dependent. Deficiency of adequate temperatures limits ectotherms in growth and maintenance. On the other hand, thermoregulatory behavior is costly and should be constrained by many factors. Using artificial thermal gradients (26–44℃ ), we measured temperature preferences of 10 spiny-tailed agamas (Uromastyx acanthinura) in controlled indoor experiment. Each lizard could choose place in the terrarium before and after feeding. Then, temperature preferences during pre-feeding and post-feeding periods were compared. We found significant increase of preferred temperature after feeding. Detailed view revealed that there is consistent influence of body size: bigger lizards maintained higher temperature during the whole experiment. We hypothesize that bigger potential predation risk on smaller lizards due to their size would force them to choose less optimal conditions.

Wydawca

-

Rocznik

Tom

62

Numer

1

Opis fizyczny

p.139-145,fig.,ref.

Twórcy

autor
  • Faculty of Agriculture, University of South Bohemia, Studentska 13, 37005 Ceske Budejovice, Czech Republic
autor
  • Faculty of Agriculture, University of South Bohemia, Studentska 13, 37005 Ceske Budejovice, Czech Republic
autor
  • DAPHNE CR–Institute of Applied Ecology, Senovazne namesti 1736, 37001 Ceske Budejovice, Czech Republic

Bibliografia

  • Adolph S.C., Porter W.P. 1993 – Temperature, activity, and lizard life histories – Am. Nat. 142: 273–295.
  • Andrews R.A., Pough F.H. 1985 – Metabolism of squamate reptiles: allometric and ecological relationships – Physiol. Zool. 58: 214–231.
  • Angilletta M.J. 2009 – Thermal Adaptation: A Theoretical and Empirical Synthesis – Oxford University Press, Oxford, 320 pp.
  • Angilletta M.J. Jr., Niewiarowski P.H., Navas C.A. 2002 – The evolution of thermal physiology in ectotherms – J. Therm. Biol. 27: 249–268.
  • Blouin-Demers G., Weatherhead P.J. 2001 – An experimental test of the link between foraging, habitat selection and thermoregulation in black rat snakes Elaphe obsoleta obsolete – J. Anim. Ecol. 70: 1006–1013.
  • Bontrager L.R., Jones D.M., Sievert L.M. 2006 – Influence of meal size on postprandial thermophily in cornsnakes, Elaphe guttata – Trans. Kansas Acad. Sci. 109: 184–190.
  • Bovo R.P., Marques O.A.V., Andrade D.V. 2010 – Does gestation or feeding affect the body temperature of the golden lancehead, Bothrops insularis (Squamata: Viperidae) under field conditions? – Zoologia, 27: 973–978.
  • Bradshaw S.D., Gans C., Saint-Girons H. 1980 – Behavioral thermoregulation in a pygopodid lizard, Lialis burtonis – Copeia, 1980: 738–743.
  • Brown R.P., Au T. 2009 – The influence of metabolic heat production on body temperature of a small lizard, Anolis carolinensis – Comp. Biochem. Physiol. 153: 181–184.
  • Brown R.P., Griffin S. 2005 – Lower selected body temperatures after food deprivation in the lizard Anolis carolinesis – J. Therm. Biol. 30: 79–83.
  • Brown R.P., Roberts N. 2008 – Feeding state and selected body temperatures in the slow-worm (Anguis fragilis) – Herpetol. J. 18: 59–62.
  • Dorcas M.E., Hopkins W.A., Roe J.H. 2004 – Effects of body mass and temperature on standard metabolic rate in the eastern diamondback rattlesnake (Crotalus adamanteus) – Copeia, 2004: 145–151.
  • Dorcas M.E., Peterson C.R., Flint M.E. 1997 – The thermal biology of digestion in rubber boas (Charina bottae): physiology, behavior, and environmental constraints – Physiol. Zool. 70: 292–300.
  • Harlow H.J., Hillman S.S., Hoffman M. 1976 – Effect of temperature on digestive efficiency in a herbivorous lizard, Dipsosaurus dorsalis – J. Comp. Physiol. 111: 1–6.
  • Herczeg G., Herrero A., Saarikivi J., Gonda A., Jäntti M., Merilä J. 2008 – Experimental support for the cost-benefit model of lizard thermoregulation, the effects of predation risk and food supply – Oecologia, 155: 1–10.
  • Huey R.B. 1982 – Temperature, physiology, and the ecology of reptiles (In: Biology of the Reptilia 12, Eds: C. Gans, F.H. Pough) – New York, Academic Press, pp. 25–91.
  • Huey R.B. 1991 – Physiological consequences of habitat selection – Am. Nat. 137: 91–115.
  • Huey R.B., Slatkin M. 1976 – Cost and benefits of lizard thermoregulation – Q. Rev. Biol. 51: 363–384.
  • Monzón J.W. 2006 – The benefits of a hot meal: identifying the advantages of postprandial thermophily in snakes – MS Thesis proposal, California State University, Northridge, 18 pp.
  • Petersen A.M., Chin W., Feilich K.L., Jung G., Quist J.L., Wang J., Ellerby D.J. 2011 – Leeches run cold, then hot – Biol. Lett. 7: 941–943.
  • Perrin N. 1988 – Why are offspring born larger when it is colder? Phenotypic plasticity for offspring size in the cladoceran Simocephalus vetulus (Müller) – Funct. Ecol. 2: 283–288.
  • Ruben J.A. 1976 – Aerobic and anaerobic metabolism during activity in snakes – J. Comp. Physiol. 109: 147–157.
  • Schleich H.H., Kastle W., Kabisch K. 1996 – Amphibians and Reptiles of North Africa: Biology, Systematics, Field Guide – Koeltz Scientific Books, Koenigstein, 630 pp.
  • Schuler M.S., Sears M.W., Angilletta M.J. 2011 – Food consumption does not affect the preferred body temperature of Yarrow’s spiny lizard (Sceloporus jarrovi) – J. Therm. Biol. 36: 112–115.
  • Sievert L.M. 1989 – Postprandial temperature selection in Crotaphytus collaris – Copeia, 1989: 987–993.
  • Sievert L.M., Andreadis P. 1999 – Specific dynamic action and postprandial thermophily in juvenile northern water snakes, Nerodia sipedon – J. Therm. Biol. 24: 51–55.
  • StatSoft I. 2007 – Statistica version 8.0 – www. statsoft.com.
  • Tattersall G.J., Milson W.K., Abe A.S., Brito S.P., Andrade D.V. 2004 – The thermogenesis of digestion in rattlesnakes – J. Exp. Biol. 207: 579–585.
  • Tracy C.R., Flack K.M., Zimmerman L.C., Espinoza R.E. 2005 – Herbivory imposes constraints on voluntary hypothermia in lizards – Copeia, 2005: 12–19.
  • Tsai T.S., Tu M.C. 2005 – Postprandial thermophily of Chinese green tree vipers, Trimeresurus s. stejnegeri: Interfering factors on snake temperature selection in a thigmothermal gradient – J. Therm. Biol. 30: 423–430.
  • Tu M.C., Hutchison V.H. 1995 – Lack of postprandial thermophily in diamond black water snakes, Nerodia rhombifera – Comp. Biochem. Physiol. 110A: 21–25.
  • Uetz P. 2011 – The Reptile Database, http:// www.reptile-database.org – Accessed August 3, 2011.
  • Vitt L.J., Caldwell J.P. 2009 – Herpetology – Academic Press, New York, 736 pp.
  • Wall M., Shine R. 2008 – Post-feeding thermophily in lizards (Lialis burtonis Gray, Pygopodidae): laboratory studies can provide misleading results – J. Therm. Biol. 33: 274–279.
  • Yampolsky L.Y., Scheiner S.M. 1996 – Why larger offspring at lower temperatures? A demographic approach – Am. Nat. 147: 86–100.
  • Zari T.A. 1991 – The influence of body mass and temperature on the standard metabolic rate of the herbivorous desert lizard, Uromastyx microlepis – J. Therm. Biol. 16: 129–133.
  • Zari T.A. 1996 – Effects of body mass and temperature on standard metabolic rate of the herbivorous Desert Lizard Uromastyx philbyi – J. Arid Environ. 33: 457–461.
  • Zimmerman L.C., Tracy C.R. 1989 – Interactions between the environment and ectothermy and herbivory in reptiles – Physiol. Zool. 62: 374–409.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fe615290-abe4-4f00-a415-a7aff030d66b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.